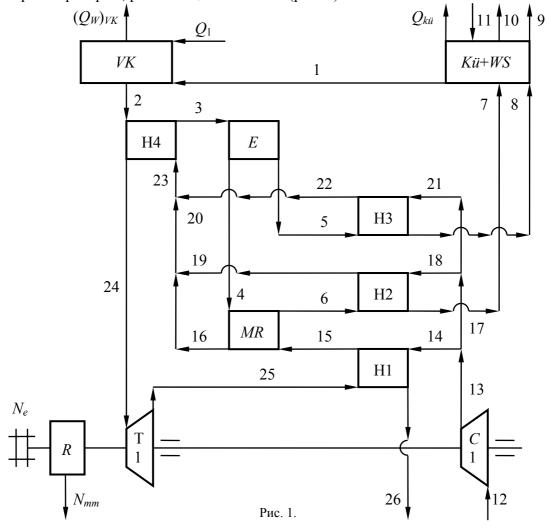
УДК 621.165

Н.К. ШОКОТОВ, д-р техн. наук; Хемниц, ФРГ **Е.И. ЯНТОВСКИЙ**, Аахен, ФРГ


БЕЗВЫБРОСНАЯ ГТУ И ЕЕ ЭФФЕКТИВНОСТЬ

Запропоновано схему безвикидної ГТУ на основі бінарного циклу: продукти згоряння першого (замкнутого циклу) є теплоносієм для підігріву робочого тіла (повітря) другого розімкнутого циклу. Розроблено методику її теплового розрахунку.

The circuitry of the emissionless gas turbine unit on the basis of binary cycle is proposed. The combustion materials of the first closed cycle are heat-carrying for heating of second open cycle actuating medium. The procedure of its thermal design is developed.

В работах [1–5] рассмотрены различные схемы безвыбросных двигателей внутреннего сгорания (ДВС) и результаты оценки их эффективности.

Представляет технический и экологический интерес и безвыбросная газотурбинная установка (ГТУ). Ниже рассматривается возможная схема безвыбросной ГТУ с регенератором, работающая на метане (рис. 1).

3'2010 75

Эта силовая установка состоит из воздушной турбины (T1), воздушного компрессора (C1), камеры сгорания (VK), четырех подогревателей (H1, H2, H3, H4), разделителя газов (E), мембранного реактора (MR), охладителя газов с водяным сепаратором ($K\ddot{u}+WS$) и редуктора (R).

Потоки рабочих тел на схеме пронумерованы. В силовой установке совершается бинарный цикл с передачей тепла от газов замкнутого цикла к воздуху в разомкнутом цикле. Замкнутый цикл можно представить так

10
$$(M_{CO_2})_x$$

1 - 2 - 3 - 4 - 6 - 7 - 1
 $(M_{O_2})_{MR}$ 11

свежий заряд M_1 , состоящий из смеси горючего газа $M_{{
m CH}_4}$, кислорода $M_{{
m O}_2}$ и транзитного диоксида углерода $\left(\!M_{{
m CO}_2}\!\right)_{\!tr}$, т.е.

$$M_1 = M_{\text{CH}_4} + M_{\text{O}_2} + \left(M_{\text{CO}_2}\right)_{tr} \tag{1}$$

направляется в VK.

Сгорание топлива в VK происходит при коэффициенте избытка окислителя $\alpha = 1,0$. Из VK выходят продукты сгорания состава

$$M_2 = (M_{\text{CO}_2})_{tr} + (M_{\text{CO}_2})_{r} + (M_{\text{H}_{2}\text{O}})_{r},$$
 (2)

где $\left(M_{{\rm CO}_2}\right)_x$ и $\left(M_{{\rm H}_2{\rm O}}\right)_x$ – образующиеся при окислении метана диоксид углерода и пары волы.

После H4 поток продуктов сгорания M_3 соответствует потоку M_2 .

Заслонкой в разделителе E продукты сгорания M_3 делятся на две части: $M_4 = \left(M_{\mathrm{CO}_2}\right)_{tr} + \left(M_{\mathrm{H}_2\mathrm{O}}\right)_4$ и $M_5 = \left(M_{\mathrm{CO}_2}\right)_x + \left(M_{\mathrm{H}_2\mathrm{O}}\right)_5$ так, что

$$(M_{\rm H_2O})_4 + (M_{\rm H_2O})_5 = (M_{\rm H_2O})_r$$

Поток M_4 направляется в MR. Там к нему от нагретого потока воздуха в количестве $M_{15}-M_{16}$ добавляется кислород, образующийся вследствие отделения его из воздуха на ионном уровне при прохождении последнего через керамические мембраны $[6,\ 7]$ с последующим смешением с продуктами сгорания. Формируется поток M_6 состава

$$M_6 = M_4 + (M_{O_2})_{MR} = M_4 + (M_{15} - M_{16}).$$
 (3)

Для эффективного отделения кислорода из воздуха с помощью керамических мембран необходимо обеспечить два условия [6, 7]:

- 1) керамические мембраны в MR должны иметь температуру 800–1000 °C;
- 2) отношение парциального давления кислорода в потоке воздуха над мембраной к парциальному давлению кислорода в потоке газов под мембраной должно быть не ниже трех.

Далее потоки продуктов сгорания $M_7 = M_6$ и $M_8 = M_7$ поступают в узел $K\ddot{u}+WS$, где при их охлаждении от потоков M_7 и M_8 отделяется водный конденсат $M_9 = (M_{_{\mathrm{H},\mathrm{O}}})_{_{\mathrm{r}}}$.

Сухой поток диоксида углерода $M_{10} = \left(M_{\text{CO}_2}\right)_x$ направляется в специальный компрессор (на рис. 1 не показан), там он сжимается и после охлаждения сжижается. В жидком виде парниковый газ эвакуируется для захоронения.

76 3'2010

К находящемуся в потоке 7 окислителю $M_{\text{Ox}} = M_{\text{O}_2} + \left(M_{\text{CO}_2}\right)_{tr}$ добавляется топливо $M_{\rm CH}$, и новый свежий заряд M_1 направляется к VK.

Рабочим телом разомкнутого цикла (см. рис. 1) является атмосферный воздух, поступающий в компрессор C1 (M_{12}). Далее потока воздуха M_{13} делится на три потока $M_{12} = M_{13} = M_{14} + M_{18} + M_{21}.$

H1, H2, Перед подогревателями H3 температура $T_{13} = T_{14} = T_{17} = T_{18} = T_{21}$, а после указанных нагревателей она становится равной $T_{15} = T_{16} = T_{19} = T_{20} = T_{22} = T_{23}.$

Количество воздуха, проходящее через турбину, определяется из соотношения
$$M_{24} = \frac{H_2 + \left(M_{\text{O}_2}\right)_{MR} h_{13} - \left(H_7 + H_8\right)}{\left(h_{24} - h_{25}\right) + \left(h_{26} - h_{13}\right)},\tag{4}$$

где H_2 , H_7 , H_8 – соответствующие энтальпии потоков, а h_{13} , h_{24} , h_{25} , h_{26} – мольные энтальпии потоков рабочего тела. При этом

$$M_{13} = M_{24} + (M_{O_2})_{MR}$$
.

варианте подача рассматриваемом метана равна $M_{\rm CH_4}$ = 0,014013169 кмоль/с, а низшая теплота сгорания метана H_u = 802300 кДж/кмоль

Один киломоль окислителя содержит 45 % кислорода и 55 % диоксида углерода [4]. С поверхности VK в окружающую среду излучается теплота $(Q_W)_{VK} = 0.02Q_1$.

Параметры потоков вещества и их состав даны в таблице 1.

Тепловой баланс по контуру VK имеет вид

$$Q_1 = (H_2 - H_1) + (Q_W)_{VK}. (5)$$

Из баланса энтальпий по контуру подогревателя Н4 определяются температуры потоков T_{23} и T_3 , которые соответственно равны 1256,4 К и 1276,4 К. А температура керамической мембраны в этом случае равна $t_{\rm M} = t_{23} = 983,4$ °C.

Так как $\left(M_{\rm O_2}\right)_{MR}=M_{\rm O_2}$ =0,02802634 кмоль/с, то мольная доля кислорода в M_6 равна $(\mu_{O_2})_6 = M_{O_2}/M_6 = 0.34109$. Мольная доля кислорода в потоке под мембраной определяется из соотношения

$$\mu_u = \frac{\left(\mu_{O_2}\right)_4 + \left(\mu_{O_2}\right)_6}{2} = 0,17055.$$

Если принять степень повышения давления в компрессоре $\pi_{C1} = 2,75$, то отношение парциальных давлений кислорода над и под керамической мембраной будет равно

$$\pi_{O_2} = \frac{\mu_L}{\mu_L} \pi_{C1} = \frac{0,209}{0.17055} \cdot 2,75 = 3,37$$

где $\mu_L = 0.209$ – мольная доля кислорода в воздухе.

Таким образом, в MR оба условия [6, 7], необходимые для эффективного отделения кислорода из воздуха, соблюдаются.

Расход воздуха через турбину (4) равен $M_{24} = 0.918696$ кмоль/с, а расход воздуха через компрессор равен сумме $M_{_3} = M_{_{24}} + \left(M_{_{\mathrm{O}_2}}\right)_{_{\!M\!R}} = 0,\!918696 + 0,\!028026 = 0,\!946722\;\mathrm{кмоль/c}\;.$

Данные табл. 1 позволяют определить потоки теплоты в теплообменниках Н1, Н2, Н3 и Н4, потоки охладителя (воздуха) в них и средние температуры подвода и отвода тепла в

3'2010 77

Таблица 1 Параметры потоков и их состав

Номер потока	<i>P</i> , Па	Т, К	М, кмоль/с	Н, кВт	Состав потока
1	2	3	4	5	6
1	101325	308,0	0,07629392	818,36	$CH_4 + O_2 + (CO_2)_{tr}$
2	101325	2960,9	0,07629392	11836,27	$\left(\mathrm{CO}_{2}\right)_{tr} + \left(\mathrm{CO}_{2}\right)_{x} + \left(\mathrm{H}_{2}\mathrm{O}\right)_{x}$
3	101325	1276,4	0,07629392	4276,44	$\left(\mathrm{CO}_{2}\right)_{tr} + \left(\mathrm{CO}_{2}\right)_{x} + \left(\mathrm{H}_{2}\mathrm{O}\right)_{x}$
4	101325	1276,4	0,05414000	3034,8	$(CO_2)_{tr} + (H_2O)_4$
5	101325	1276,4	0,02215035	1241,6	$\left(\mathrm{CO}_{2}\right)_{x} + \left(\mathrm{H}_{2}\mathrm{O}\right)_{5}$
6	101325	1271,7	0,08216634	4106,8	$\left(\mathrm{CO}_{2}\right)_{tr} + \left(\mathrm{H}_{2}\mathrm{O}\right)_{4} + \left(\mathrm{O}_{2}\right)_{MR}$
7	101325	423,1	0,08216634	1246,18	$\left(\mathrm{CO}_{2}\right)_{tr} + \left(\mathrm{H}_{2}\mathrm{O}\right)_{4} + \left(\mathrm{O}_{2}\right)_{MR}$
8	101325	423,1	0,02215035	371,12	$\left(\mathrm{CO}_{2}\right)_{x} + \left(\mathrm{H}_{2}\mathrm{O}\right)_{5}$
9	101325	308,0	0,028026338	651,03	$(H_2O)_x$
10	101325	308,0	0,014013169	184,15	$(CO_2)_x$
11	101325	293,0	0,014013169	116,09	CH ₄
12	101325	293,0	0,946722	7852,11	воздух
13	278644	408,1	0,946722	11034,62	воздух
14	278644	408,1	0,806430	9399,3	воздух
15	277144	1256,4	0,806430	30845,0	воздух
16	277144	1256,4	0,778394	29773,0	воздух
17	278644	408,1	0,140292	1635,19	воздух
18	278644	408,1	0,10756730	1253,76	воздух
19	277144	1256,4	0,10756730	4114,38	воздух
20	277144	1256,4	0,8859613	33887,47	воздух
21	278644	408,1	0,0327336	381,53	воздух
22	277144	1256,4	0,0327336	1252,04	воздух
23	277144	1256,4	0,918696	35139,60	воздух
24	275644	1500,0	0,918696	42699,38	воздух
25	102000	1222,6	0,918696	34111,50	воздух
26	101325	480,0	0,918696	12665,70	воздух

Потоки теплоты и воздуха через нагреватели (кВт, %)

Таблица 2

$Q_{ m H1}$	$Q_{ m H2}$	$Q_{ m H3}$	$Q_{ m H4}$	ΣQ_i
21445,8	2860,62	870,51	7559,83	32736,76
65,51	8,74	2,66	23,09	100,0 %
M_{14} , кмоль/с	M_{18} , кмоль/с	M_{21} , кмоль/с	M_{23} , кмоль/с	M_{13} , кмоль/с
0,80642	0,107567	0,0237336	0,918696	0,946722
$T_{m(14-15)},\mathrm{K}$	$T_{m (18-19)}$, K	$T_{m(21-22)}$, K	$T_{m(23-24)}$, K	Средняя тем-ра
762,65	762,65	762,65	1375,24	подвода тепла
$T_{m (25-26)}$, K	$T_{m (6-7)}$, K	$T_{m(5-8)}$, K	$T_{m(2-3)}$, K	Средняя тем-ра
800,8	782,89	786,5	2043,6	отвода тепла

78 3'2010

каждом подогревателе (табл. 2). Так, например, в Н1 средняя температура подвода тепла равна [9]

$$T_{m(14-15)} = \frac{h_{15} - h_{14}}{s_{15} - s_{14}} = \frac{38249,38 - 11655,61}{34,87} = 762,65 \text{ K},$$

а средняя температура отвода тепла равна

$$T_{m(25-26)} = \frac{h_{25} - h_{26}}{s_{25} - s_{26}} = \frac{37130,34 - 13786,61}{29,15} = 800,8 \text{ K}.$$

Видно, что во всех теплообменниках средняя температура «горячего» источника выше средней температуры «холодного» источника. Так второй принцип термодинамики подтверждает, что указанные в табл. 2 потоки тепла и соответствующие им потоки вещества термодинамически реальны.

Легко убедиться в том, что сумма потоков теплоты через подогреватели H1, H2, H3 и H4 расходуется на нагрев воздуха от компрессора до турбины $(H_{24}-H_{13})$ и частично передается продуктам сгорания с кислородом в MR в количестве $\left(M_{O_2}\right)_{MR}h_{15}$, т.е.

$$Q_{\rm HI} + Q_{\rm H2} + Q_{\rm H3} + Q_{\rm H4} = (H_{24} - H_{13}) + (M_{\rm O_2})_{MR} h_{15}$$

Наибольшим здесь является поток $Q_{\rm H1}$ (65 % от $\Sigma Q_{\rm 1}$). Но H1 — это обычный регенератор тепла, который имеется почти во всех выпускаемых сегодня промышленностью ГТУ. Использование такого регенератора для стационарных, судовых и тепловозных безвыбросных ГТУ не вызовет особых проблем. Уже сегодня конструкторы и ученые всех стран интенсивно работают над созданием эффективных и малогабаритных регенераторов для транспортных ГТУ.

Баланс тепла в безвыбросной ГТУ имеет вид (табл. 3)

$$Q_1 = N_e + Q_f + Q_{\ddot{o}} + Q_{k\ddot{u}} + (Q_W)_{VK}. \tag{6}$$

Таблица 3

где $Q_f = (H_{26} + H_9 + H_{10}) - (H_{11} + H_{12})$ – теплоотвод с газообразными веществами; $Q_{\ddot{o}} = N_{mm}$ – теплоотвод при охлаждении масла;

 $Q_{kii} = (H_{11} + H_7 + H_8) - (H_1 + H_9 + H_{10})$ – теплоотвод при охлаждении газов;

 $N_e = N_{\rm T1J} - N_{C1J} - N_{mm}$ — эффективная мощность силовой установки ($N_{\rm T1J}$, N_{C1J} , N_{mm} — соответственно мощность турбины, мощность на привод компрессора и механические потери в турбоагрегате и редукторе).

Тепловой баланс безвыбросной ГТУ (кВт, %)

Статьи	кВт	Статьи	% ot Q_1
Q_1	11242,77	q_1	100
N_e	4732,10	η_e	42,09
Q_2	6510,67	q_2	57,91
$N_{\mathrm{T}1J}$	8587,89	$\Delta_{\mathrm{T1}J}$	76,39
N_{C1J}	3182,50	Δ_{C1J}	28,31
N_{mm}	673,29	Δ_{mm}	5,89
Q_f	5532,68	q_f	49,21
$Q_{\ddot{o}}$	673,29	$q_{\ddot{o}}$	5,99
$Q_{k\ddot{u}}$	79,85	$q_{k\ddot{u}}$	0,71
$(Q_W)_{VK}$	224,86	$(q_W)_{VK}$	2,0

3'2010 79

В рассматриваемой безвыбросной ГТУ эффективная мощность N_e равна 4732 кВт, а эффективный КПД η_e ее равен 0,42. Заметим, что в безвыбросной ГТУ в замкнутом цикле полезная работа не производится.

Мощность воздушной турбины равна $N_{{\rm T}lJ}$ = 8588 кВт, что составляет 76,4 % от подводимой теплоты Q_1 .

Потери с воздухом после H1 велики (49,2 % от Q_1). Но, чтобы их уменьшить, нужна другая, более сложная схема безвыбросной ГТУ.

При сгорании метана образуется диоксид углерода (табл. 4а) в количестве

$$(M_{\text{CO}_2})_x = \text{CO}_2'' \cdot M_{\text{CH}_4} = 1 \cdot 0,014013169 = 0,014013169 \text{ кмоль/с}$$

или

$$\left(G_{\mathrm{CO_2}}\right)_{_{X}} = \left(M_{\mathrm{CO_2}}\right)_{_{X}} m_{\mathrm{CO_2}} = 0,014013169 \cdot 44,01 = 0,616710 \; \mathrm{kg/c}$$

или за час работы на номинальном режиме

$$G_{\text{CO}_2} = 0,616710 \cdot 3600 = 2220,2 \text{ кг/час}.$$

В рассматриваемом случае это будет предотвращенный выброс парникового газа в атмосферу.

В табл. 46 приведено значение часового расхода метана в данной установке определенной из соотношения

$$G_{\mathrm{CH_4}} = M_{\mathrm{CH_4}} \cdot m_{\mathrm{CH_4}} \cdot 3600,$$

где $m_{\rm CH_*}$ – мольная масса метана [8].

Тогда отношение образующегося при горении диоксида углерода к израсходованному топливу равно

$$\frac{G_{\text{CO}_2}}{G_{\text{CH}_4}} = \frac{m_{\text{CO}_2}}{m_{\text{CH}_4}} = \frac{44,01}{16,043} = 2,7433$$
.

Технология изготовления каждого из перечисленных выше узлов, составляющих безвыбросную Γ ТУ, известна. Поэтому можно утверждать, что уже сегодня промышленность может серийно выпускать стационарные, судовые и тепловозные безвыбросные Γ ТУ. Можно быть уверенным, что инженеры и ученые преодолеют трудности, связанные с созданием малогабаритных автомобильных безвыбросных Γ ТУ. Необходима лишь добрая воля землян для радикального уменьшения загрязнения атмосферы земли парниковым газом. А что делать с накапливаемыми под Землей и под водой количествами CO_2 ? Здесь обнадеживает сообщение о том, что английские специалисты уже получили патент на способ превращения CO_2 в топливо.

а) Предотвращенный выброс парникового газа в безвыбросной ГТУ

Таблица 4

$M_{ m CH_4}$,	$CO_2'' = n \cdot \mu_{CH_4}$	$\left(M_{\mathrm{CO}_2}\right)_x = \mathrm{CO}_2'' M_{\mathrm{CH}_4}$	$m_{{\rm CO}_2}$,	$G_{{ m CO}_2}$,	$G_{{ m CO}_2}$,
кмоль/с			кг/кмоль	кг/с	кг/час
0,014013169	1,0	0,14013169	44,01	0,616710	2220,0

б) Израсходованное топливо

$M_{ m CH_4}$,	m_{CH_4} ,	$G_{ m CH_4}$,	$G_{ m CH_4}$,	$G_{{ m CO}_2}$	$\frac{m_{{ m CO}_2}}{}$
кмоль/с	кг/кмоль	кг/с	кг/час	$G_{ m CH_4}$	$m_{ m CH_4}$
0,014013169	16,043	0,224813	809,39	2,7433	2,7433

3'2010

Выводы:

- 1. Предлагается безвыбросная ГТУ на основе бинарного цикла: рабочее тело первого, замкнутого цикла (продукты сгорания) являются теплоносителем для воздуха, рабочего тела второго, разомкнутого цикла.
- 2. Разработана методика теплового расчета безвыбросной ГТУ, позволяющая определить параметры потоков вещества в характерных точках циклов, потоки теплоты и потоки рабочих тел в теплообменниках, средние температуры подвода и отвода в них, а также значения статей теплового баланса по контуру безвыбросной ГТУ при заданной подаче топлива.
- 3. Установлено, что безвыбросная ГТУ, работающая на метане, превращает 42 % теплоты топлива в эффективную мощность. Но имеются еще и резервы для дальнейшего повышения ее эффективности при более рациональной, но и более сложной схеме ГТУ.
- 4. Установлено, что в безвыбросной ГТУ при часовом расходе метана 809,4 кг/час предотвращенный выброс в атмосферу парникового газа составляет 2220,2 кг/час, т.е. масса CO_2 в 2,74 раза больше массы топлива.
- 5. Промышленность может уже сегодня создать стационарные, судовые и тепловозные безвыбросные ГТУ.
- 6. Создание и эксплуатация указанных в п. 5 безвыбросных силовых установок поможет преодолеть трудности, связанные с созданием малогабаритных безвыбросных ГТУ для автомобилей, работающих на жидких и газообразных органических топливах.

Список литературы: 1. ZEMPES (Zero Emission Piston Engine System) / E. Yantovski, M. Shokotov // 2nd Annual Conf. on Carbon Dioxide Sequestration, 2003, May 5–8, Alexandria, VA USA. 2. Zero Emission Piston Engine System for a Bus / E. Yantovski, M. Shokotov, J. Mc. Govern, V. Vaddella // Proc. Inf. Conf. VAESEP, Dublin, 2004. 3. Elaboration of Zero Emission Membrane piston Engine system (ZEMPES) for propane fuelling / E. Yantovski, M. Shokotov, J. Mc. Govern, V. Shokotov, Foyk // 4th Carbon Seguestration Conf. Pap. 109, Alexandria, VA USA, 2005. 4. Forcing of Zero Emission piston engine by Oxygen Enrichment in membrane Reaktor (Hi − Ox ZEMPES) Project / M. Shokotov, E. Jantovski // JSSN 0131-2928. Проблемы машиностроения. − 2007. − T. 10, № 3. 5. Zero Emission Power Cycles / E. Jantovski, J. Gorski and M. Shokotov // CRC Press, London-New York, 2009, 286 S. 6. Armstrong P. JTM Oxygen: An Enabler for JGCC / P. Armstrong, J. Sorensen, T. Foster // Progress report technologies 2003, 12–15 Okt., 2003. 7. Selimovic F. Modelling of Transport Phenomena in Monolithic Structures related to CO₂-free Power process, Lund Uni of Technology, Sweden, 03.07.2005. 8. Бэр Г.Д. Техническая термодинамика. − M.: Мир, 1977. − 518 с. 9. Кириллин В.А. Техническая термодинамика. Изд. 2-е / В.А. Кириллин, В.В. Сычев, А.Е. Шейндлин. − М.: Энергия, 1974. − 448 с.

© Шокотов Н.К., Янтовский Е.И., 2010 Поступила в редколлегию 17.11.09

3'2010 81