УДК 621.753

АБЛЯСКИН О.И., НТУ «ХПИ»

ВЫБОР РАЦИОНАЛЬНОГО СПОСОБА БАЗИРОВАНИЯ ДЕТАЛЕЙ ПРИ КОНСТРУИРОВАНИИ СБОРОЧНЫХ ЕДИНИЦ

Розглянуті особливості базування деталей складальних одиниць по циліндрічним поверхням. Викладена методика призначення допустимих відхилень розмірів та розташування базових поверхонь спряжених деталей у залежності від схеми їх базування.

Введение. При разработке конструкторской документации важное значение имеет обоснование технических требований, предъявляемых к изготовлению деталей сборочных единиц. Правильное назначение этих требований имеет не только техническое значение — обеспечение необходимой работоспособности и долговечности конструкции, но и экономическое, определяющее стоимость изготовления соответствующих изделий.

Анализ последних достижений и публикаций. Существующие нормативные материалы [1,2] не затрагивают вопросы обоснования технических требований к базовым поверхностям валов, корпусов, втулок и т.п., используемым для установки подшипников, зубчатых колес и др. Вопросы базирования деталей в таких сопряжениях рассмотрены в [3], где проанализированы ситуации, которые могут возникнуть при сопряжении деталей, имеющих те или иные отклонения расположения базовых поверхностей. Однако и в этой работе недостаточно освещена методика назначения характера сопряжения деталей при заданном допуске их взаимного расположения.

Цель и постановка задачи. Целью работы является рассмотрение вопросов выбора рационального способа базирования деталей на валах и в расточках корпусов и обоснование назначения технических требований к базовым поверхностям сопрягаемых деталей, изложение методики выбора характера сопряжения деталей по цилиндрическим поверхностям с целью обеспечения необходимых технических требований к их взаимному расположению.

Обоснование технических требований к изготовлению деталей и их назначение. Сборка сборочной единицы с обеспечением взаимозаменяемости при заданном расположении деталей В одном, например, осевом направлении, обеспечивается расчетом размерных цепей. Но существует также проблема (без правильного **УГЛОВОГО** перекоса) базирования обеспечения деталей, устанавливаемых на валах и в расточках корпусов. Известно [3], что даже при сопряжении с натягом цилиндрическая поверхность не может обеспечить вполне определенное взаимное угловое расположение сопряженных деталей, если длина участка сопряжения менее 0,8 диаметра посадочной поверхности. С учетом этого обстоятельства должны назначаться соответствующие предельные отклонений расположения торцов сопрягаемых деталей относительно оси вращения либо оси расточки.

При механической обработке деталей в условиях крупносерийного или массового производства режущим инструментом, установленным на размер, размеры деталей распределяются в пределах поля допуска, как правило, по закону нормального

распределения. Рассеивание случайной величины около ее математического ожидания характеризуется дисперсией D или средним квадратичным отклонением σ , причем $\sigma = \sqrt{D}$. При распределении случайной величины по нормальному закону поле рассеивания в 6σ ($\pm 3\sigma$ от математического ожидания) представляет собой практически предельное поле рассеивания случайной величины — вероятность выхода случайной величины за границы значений $\pm 3\sigma$ (процент риска) составляет 0,27%. Поэтому при рассмотрении вопросов точности изготовления деталей в машиностроении принимают величину допуска размера $t = 6\sigma$ [3].

При определении суммарной погрешности (погрешности сборочной единицы) используют известное положение теории вероятности о дисперсии суммы нескольких независимых случайных величин [4]:

$$D\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} Dx_{i}, \tag{1}$$

где Dx_i - дисперсия случайной величины x_i . В последнем выражении дисперсии являются показателями точности сборочной единицы и составляющих ее деталей, размеры которых являются влияющими на упомянутый показатель. Учитывая, что

$$Dx_i = \sigma_{x_i}^2$$
, можно записать $\sigma_{\Sigma}^2 = \sum_{i=1}^n \sigma_{x_i}^2$, а так как $\sigma_{\Sigma} = \frac{t_{\Sigma}}{6}$ и $\sigma_{x_i} = \frac{t_i C_i}{6}$, где в

зависимости для σ_{x_i} учтен коэффициент приведения, то

$$t_{\Sigma} = \sqrt{\sum_{i=1}^{n} C_i^2 t_i^2} \ . \tag{2}$$

В этих зависимостях σ_{x_i} и $\sigma_{\Sigma}-$ среднее квадратичное отклонение величины x_i и суммы величин соответственно;

 t_i и t_{Σ} – допуск размера составляющего (влияющего) звена и суммарный допуск этих размеров;

n – количество деталей, размеры которых являются влияющими на показатель точности сборочной единицы;

 C_i — коэффициент приведения, определяющий направление и степень воздействия влияющего размера на конечный. Величину коэффициентов C_i определяют из рассмотрения расчетной схемы.

Опытным путем установлено [3], что, если расчетная схема содержит только векторные величины, при проектных расчетах в зависимость (2) для определения величины суммарного вектора погрешности следует вводить поправочный коэффициент, учитывающий характер рассеивания размеров в пределах их допусков и равный 0,85:

$$t_{\Sigma} = 0.85 \sqrt{\sum_{i=1}^{n} C_i^2 t_i^2} \ . \tag{3}$$

При сопряжении деталей по цилиндрической поверхности величина зазора в сопряжении $\Delta=D-d$ является случайной величиной. Здесь D и d — соответственно диаметры отверстия и вала. Среднее значение зазора $\Delta_m=Em-em$, где Em и em — соответственно средние отклонения размеров отверстия и вала. Рассеивание величины зазора определяется выражением (2): $t_\Delta = \sqrt{t_a^2 + t_b^2}$, где t_a и t_b — допуски размеров соответственно отверстия и вала, рассматриваемые как случайные независимые скалярные величины. Наибольший Δ_{\max} и наименьший Δ_{\min} вероятностные зазоры в сопряжении $\Delta_{\max} = \Delta_m + 0,5t_\Delta$; $\Delta_{\min} = \Delta_m - 0,5t_\Delta$. Погрешность базирования детали на валу определяется относительным поворотом (перекосом) детали l в пределах зазора Δ (рис.1, а). Наибольшая и наименьшая вероятностные погрешности базирования (угол перекоса в радианах) составляют $\omega_{\max} = \frac{\Delta_{\max}}{l}$; $\omega_{\min} = \frac{\Delta_{\min}}{l}$, где индекс "ц" указывает на осуществление базирования по цилиндрической поверхности. Отклонение торца детали l от перпендикулярности к оси вала определяется также величиной диаметра (плеча), на котором рассматривается это отклонение: $Z_{\mathrm{u}} = \omega_{\mathrm{u}} d_a$.

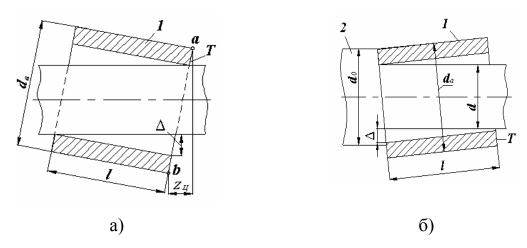


Рисунок 1 — Варианты базирования детали на валу: а — по цилиндрической поверхности; б — по торцу

При использовании торца T детали I в качестве базового для установки на вал следующей детали максимальная величина погрешности расположения этого торца определится выражением (3): $t_{\Sigma}=0.85\sqrt{Z_{\text{ц max}}^2+t_1^2}$, где t_1 — допуск перпендикулярности правого торца детали I к оси отверстия. Поскольку этот допуск рассматривается на диаметре d_a , коэффициент приведения при t_1 $C_1=\frac{d_a}{d_a}=1$.

Аналогичная ситуация возникает и при упоре левого торца детали l в буртик вала в случае, если перекос торца буртика относительно оси посадочной поверхности превышает перекос детали l, определяемый ее длиной и величиной зазора в сопряжении с валом.

На рис. 1, б показано положение детали, которое она займет в случае относительно большого диаметрального зазора, не препятствующего плотному

взаимному прилеганию торцов детали I и буртика вала. Максимальная величина погрешности расположения торца T детали I определится выражением

$$t_{\Sigma} = 0.85\sqrt{t_1^2 + C_2^2 t_2^2} , \qquad (4)$$

где t_1 – допуск параллельности торцов детали I на диаметре d_a ;

 t_2 — допуск перпендикулярности торца буртика вала на диаметре $\,d_0\,;$

 $C_2 = \frac{d_a}{d_0}$ — коэффициент приведения погрешности t_2 от диаметра d_0 к диаметру d_a .

Коэффициент приведения для t_1 здесь, как и ранее, $C_1 = \frac{d_a}{d_a} = 1$.

Если рассматривать торец T детали I как сборочную базу для установки на вал следующей детали, то величина перекоса оси детали I при базировании по цилиндрической поверхности или торцу вала будет одной из влияющих величин для определения положения торца T. Для определения поверхности, которая является базирующей для детали I, необходимо сравнить величины $\mathcal{O}_{\text{ц max}}$ и $\mathcal{O}_{\text{т max}}$, где $\mathcal{O}_{\text{т max}}$ – угол перекоса детали при ее базировании по торцу. Меньшая из этих величин и определяет поверхность базирования детали I на валу.

Ограничение величины перекоса при сопряжении деталей характерно, в основном, при установке на валы подшипников качения и зубчатых колес и имеет целью обеспечение расчетного ресурса этих деталей в эксплуатации. Допускаемые торцевые биения заплечиков валов и отверстий, служащих для базирования подшипников качения, приведены в [1, 2 и др.] и составляют величины, оцениваемые допусками 6—8 квалитетов точности для подшипников класса точности 0 в зависимости от величины посадочных диаметров d или D их колец.

На рисунке 2 в качестве примера приведена конструктивная схема валашестерни, установленного на двух подшипниках, разделенных втулкой 2. В осевом направлении левый подшипник базируется по торцу мазеудерживающего кольца I, правый — по торцу втулки 2. Оба подшипника — роликовые конические № 7309 класса точности 0, диаметр шеек под подшипники — $45k6\binom{+0.018}{+0.002}$ мм. Допускаемое торцевое биение опорных поверхностей — 0.02 мм [2], что при диаметре буртика 55 мм примерно соответствует допуску 6-го квалитета (0.019 мм). Диаметр торцов кольца I и наружный диаметр втулки d_e также примем равным 55 мм.

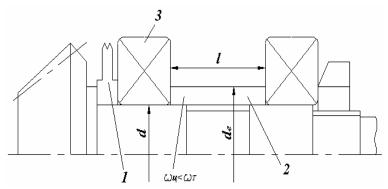


Рисунок 2 – Схема базирования подшипников

Погрешность базирования левого подшипника зависит от перпендикулярности t_0 торца буртика вала к оси посадочной поверхности и параллельности t_1 торцов кольца I: $t_{\Sigma}=0.85\sqrt{t_0^2+t_1^2}$. Коэффициенты приведения погрешностей $C_0=C_1=1$. Кольца и втулки, используемые в конструкциях подшипниковых узлов, являются относительно простыми деталями, поэтому допуски расположения их торцевых поверхностей можно принять достаточно жесткими, особенно при большом количестве таких деталей в наборе. Приняв допуск параллельности торцов кольца I по IT5 (0,013 мм на диаметре 55 мм), для допуска перпендикулярности торца буртика t_0 из зависимости (3) получим

$$t_0 = \sqrt{\left(\frac{t_{\Sigma}}{0.85}\right)^2 - t_1^2} = \sqrt{\left(\frac{0.02}{0.85}\right)^2 - 0.013^2} = 0.0196$$
 mm.

При базировании правого подшипника по торцу втулки 2 требования к расположению ее правого торца будут зависеть от способа базирования самой втулки на валу. При посадке втулки на вал с натягом и длине втулки не менее 0,8 диаметра вала втулка базируется по цилиндрической поверхности. Допуск перпендикулярности ее правого торца к оси отверстия принимается равным 0,02 мм [2]. Требования к расположению левого торца не предъявляются. Однако, если конструкция втулки симметрична, указанный допуск назначается на каждый из торцов.

При установке втулки на вал с зазором или по переходной посадке указанное отклонение расположения ее торца будет результирующим, включающим перекос $Z_{\rm u,\,max}$ торца вследствие перекоса оси втулки относительно оси вала при наличии зазора в посадке и перекос t_2 торца втулки относительно оси отверстия. Приняв допуск перпендикулярности торца втулки по IT5 (0,013 мм на диаметре 55 мм), для $Z_{\rm u,max}$ получим

$$Z_{\text{\tiny II, max}} = \sqrt{\left(\frac{t_{\Sigma}}{0.85}\right)^2 - \ t_2^2} = \sqrt{\left(\frac{0.02}{0.85}\right)^2 - 0.013^{-2}} = 0.0196 \ \text{mm} \ .$$

При длине втулки $l=d=45\,$ мм величина допустимого вероятностного зазора в посадке составит

$$\Delta_{\text{max}} = Z_{\text{u,max}} \frac{l}{d_{\text{o}}} = 0,0196 \frac{45}{55} = 0,0160 \text{ MM}.$$

При изготовлении отверстия во втулке по 7-му или 8-му квалитетам точности (IT7=25 мкм, IT8=39 мкм) рассеивание величины зазора соответственно составит $t_{\Delta}=\sqrt{t_a^2+t_b^2}=\sqrt{0,025^2+0,016^2}\approx 0,030$ мм или $t_{\Delta}=\sqrt{0,039^2+0,016^2}\approx 0,042$ мм. Средняя величина зазора $\Delta_m=\Delta_{\max}-0,5t_{\Delta}=0,016-0,5\cdot0,030=0,001$ мм или $\Delta_m=0,016-0,5\cdot0,042=-0,005$ мм (натяг), а среднее отклонение размера отверстия $Em=em+\Delta_m=0,010+0,001=0,011$ мм или Em=0,010-0,005=0,005 мм. При этом поле

допуска размера отверстия определится как $Em \pm \frac{IT7}{2} = 0,011 \pm \frac{0,025}{2} = 0,0235... - 0,0015$ мм или $Em \pm \frac{IT8}{2} = 0,005 \pm \frac{0,039}{2} = 0,0245... - 0,0145$ мм. Обработка отверстия в размер $\emptyset 45H7 \begin{pmatrix} +0,025 \\ 0 \end{pmatrix}$ мм практически полностью удовлетворяет установленным требованиям.

Если стандартное поле допуска отверстия подобрать затруднительно, следует задавать его расположение числовыми величинами.

Если длина втулки l < 0,8d ,то отклонение ее правого торца от перпендикулярности к оси вала определяется допусками перпендикулярности t_0 торца буртика вала, параллельности t_1 торцов кольца l, t_3 кольца левого подшипника и t_2 втулки 2, т.е. основной базой для втулки 2 является ее торец. Поскольку количество погрешностей, влияющих на конечную величину, значительно, примем допуски t_1 и t_2 более жесткими — 0,008мм на диаметре 55 мм (IT4). По тем же соображениям примем для левого подшипника класс точности 6 с допуском параллельности торцов внутреннего кольца t_3 =0,010 мм [5]. Таким образом, допуск перпендикулярности торца буртика вала определится выражением

$$t_0 = \sqrt{\left(\frac{t_{\Sigma}}{0.85}\right)^2 - t_1^2 - t_2^2 - t_3^2} = \sqrt{\left(\frac{0.020}{0.85}\right)^2 - 0.008^2 - 0.008^2 - 0.010^2} = 0.018 \text{ mm}.$$

Полученные величины соответствуют обычно задаваемым ограничениям торцевого биения буртиков валов, однако требуют более точного изготовления промежуточных деталей.

Требования к перпендикулярности опорных поверхностей буртиков стаканов и корпусных деталей относительно оси отверстия при установке в них наружных колец подшипников назначаются по той же методике, что и при установке подшипников на вал.

Результаты расчетов показывают, что конструкция подшипникового узла с базированием втулки по цилиндрической поверхности является более технологичной. Следует отметить, что выполнение требований стандарта [1] по ограничению суммарного перекоса колец подшипников с разбивкой величины перекоса на составляющие требует существенного ужесточения допускаемых перекосов торцов опорных буртиков.

Выводы. Обеспечение требуемого ресурса деталей механизмов (подшипников качения, зубчатых колес и др.) требует анализа условий их базирования на сопряженных деталях с назначением необходимой точности обработки базовых поверхностей.

Список литературы: 1. ГОСТ 3325-85. Подшипники качения. Поля допусков и технические требования к посадочным поверхностям валов и корпусов. Посадки. — Введен 01.01.1985 г. 2. Бейзельман Р.Д., Цыпкин Б.В., Перель Л.Я. Подшипники качения. Справочник. — М.: Машиностроение, 1975. — 572 с. 3. Дунаев П.Ф., Леликов О.П. Расчет допусков размеров. — М.: Машиностроение, 1981. — 189 с. 4. Якушев А.И., Воронцов Л.Н., Федотов Н.М. Взаимозаменяемость, стандартизация и технические измерения. — М.: Машиностроение, 1987. — 352 с. 5. Спришевский А.И. Подшипники качения. — М.: Машиностроение, 1969. — 632 с.