В.А. Фадеев, д-р техн. наук, Д.О.Федоренко, Д.В. Ромашов, В.А.Федорович, д-р техн. наук, Харьков, Украина

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ АЛМАЗНО-АБРАЗИВНОЙ ОБРАБОТКИ ПУТЕМ УПРАВЛЕНИЯ ПРОЦЕССОМ САМОЗАТАЧИВАНИЯ КРУГОВ

Найбільш поширеним в машинобудуванні високопродуктивним способом прецизійної обробки є шліфування з використанням алмазних кіл. В даній статті розглянуті основні проблеми, що виникають при шліфуванні, а також визначені перспективні шляхи їх вирішення з використанням методів планованого експерименту та математичного моделювання за методом скінчених елементів.

Наиболее распространенным в машиностроении высокопроизводительным способом прецизионной обработки является шлифование с применением алмазных кругов. В данной статье рассмотрены основные проблемы, возникающие при шлифовании в режиме самозатачивания, а также определены пути их решения с использованием методов планируемого эксперимента и математического моделирования по методу конечных элементов.

Diamond grinding is the most common way to high-precision machining. This article describes the main problems associated with self sharpening grinding process, as well as the prospects for their solution, using mathematical planning and finite element method.

Ввеление

Алмазно-абразивная обработка занимает ведущую позицию в обработке сверхтвердых материалов. Эффективность процесса алмазного шлифования определяется качеством и характеристиками алмазных кругов и правильностью выбора условий шлифования. Первое условие в большой степени обеспечивается на стадии изготовления алмазных кругов, второе — на стадии их эксплуатации.

При шлифовании абразивные инструменты подвергаются периодическим и перманентным силовым, тепловым и физико-химическим воздействиям, в результате которых их рабочие поверхности изнашиваются, затупляются и засаливаются [1]. Режущая способность шлифовального круга снижается с увеличением наработки вследствие затупления и засаливания его рабочей поверхности.

Наиболее рациональными условиями алмазного шлифования является режим их самозатачивания в процессе обработки, который обеспечивается оптимальным сочетанием прочности алмазных зерен, прочности связки и режимами обработки. Свойство самозатачивания проявляется только в том случае, если характеристика круга соответствует технологическим условиям работы. Если же она выбрана неправильно, происходит либо преждевременный износ, либо быстрое затупление круга. Последнее вызывает огранку детали, прижоги, увеличение сил резания и сопровождает-

ся шумом. Часто из-за неправильной характеристики обрабатываемый материал втирается в поверхность круга, засаливая ее и вместо шлифования имеет место вредная работа трения [2].

Повышение эффективности работы алмазно-абразивных инструментов является важной научно-практической задачей, решение которой требует, на наш взгляд, разработки научно обоснованных режимов шлифования. Результаты многочисленных теоретических и экспериментальных исследований в области абразивной обработки, свидетельствуют об эффективности применения методов моделирования при оптимизации процессов спекания и шлифования [3-6].

В настоящее время практически отсутствуют разработки по моделированию процессов спекания и шлифования алмазных кругов, позволяющие без длительных трудоемких и дорогостоящих экспериментальных исследований определять рациональные условия, реализующие самозатачивание алмазных кругов при шлифовании. В связи с этим в задачу настоящих исследований входило изучение влияния прочностных характеристик связки, покрытий, обрабатываемых материалов, температуры спекания, а также качественного и количественного состава металлофазы на НДС в зоне шлифования, определяющее степень разрушения зерна в процессе микрорезания, что позволит установить основные критерии и условия, определяющие реализацию режима самозатачивания.

Результаты и их обсуждение

При проведении исследований были использованы современные методы проведения модельных экспериментов. Для прогнозирования эксплуатационных характеристик использовался метод конечных элементов (МКЭ). Для решения поставленных задач в работе применялись новейшие аналитические CAD/CAE- комплексы, такие как: SolidWorks, CosmosWorks, ANSYS. Для получения математической модели процессов изготовления и эксплуатации кругов из СТМ был использован метод многофакторного планируемого эксперимента.

Общий вид математической модели:

$$Y = b_0 + \sum b_i X_i + \sum b_{i,j} X_i X_j + \sum b_{ii} X_i^2 + \dots$$
 (1)

где X – независимые переменные, факторы; Y – зависимые переменные, отзывы, параметры оптимизации, функции цели; b_i – коэффициенты находящиеся расчетным путем.

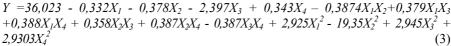
В таблице 1 приведены значения и принятые уровни независимых факторов, влияющих на процесс изготовления абразивных кругов из СТМ. С использованием выбранных факторов была проведена серия модельных экспериментов по спеканию алмазоносного слоя, в результате которых получены эпюры распределения полей напряжений и деформаций в зоне спекания.

Таблица 1. Значения факторов для моделирования процесса изготовления абразивных кругов из CTM

	КТР металлофа- зы		Модуль упругости связки		Модуль упругости покрытия		Температура	
Уровни факторов	Натураль- ное значение 1/К	Кодированное значение X_1	Натураль- ное значение Н/м ²	Кодированное значение X_2	Натураль- ное значение Н/м ²	Кодиро- ванное значение X ₃	Натураль- ное значение °C	Кодированное значение X_4
1	1,7e-05	+1	6,9e+011	+1	9e+011	+1	800	+1
0	1,1e-05	0	4,4e+011	0	5,05e+011	0	600	0
-1	0,5e-05	-1	1,9e+011	-1	1,01e+011	-1	400	-1

Обработка результатов планируемого эксперимента позволила получить математическую модель, адекватно описывающую процесс спекания шлифовальных кругов из СТМ в представленном диапазоне варьирования независимых факторов.

$$Y = 31,09 - 0.393X_1 - 0.169X_2 - 2.287X_3 - 3.604X_4 + 8.54X_1X_2 + 0.848X_1X_3 + 0.84X_1X_4 + 0.605X_2X_3 + 1.603X_2X_4 + 0.381X_3X_4 - 12.893X_1^2 - 8.598X_2^2 + 14.497X_3^2 - 10.033X_4^2$$
(2)


На рисунке 1 представлены зависимости напряжений, возникающие в системе «зерно—связка—металлофаза—покрытие» от температуры спекания при изменении КТР металлофазы, определяемой маркой алмазных зерен, и модуля упругости связки, зависящей от ее марки. При анализе результатов моделирования выявлено, что при КТР металлофазы в пределах $(1,0\div1,7)\cdot10^{-5}$ 1/К напряжения в системе минимальны. Присутствие металлофазы с КТР = $0.5\cdot10^{-5}$ 1/К приводит к увеличению напряжений в 2-2,5 раза.

Визуализация полей напряжений для случаев их минимального и максимального уровня, наблюдаемых в зоне спекания показана на рисунке 2.

Моделирование процесса шлифования осуществлялась аналогично с той лишь разницей, что в данном опыте при создании модели связки была заложена пористая структура, что отображает реальные ее особенности в спеченном круге.

В табл. 2 представлены уровни и значения факторов, принятые для исследования НДС системы в зоне микрорезания, при шлифовании, как наиболее влияющие на данный процесс.

Для описания процесса обработки была получена следующая математическая модель:

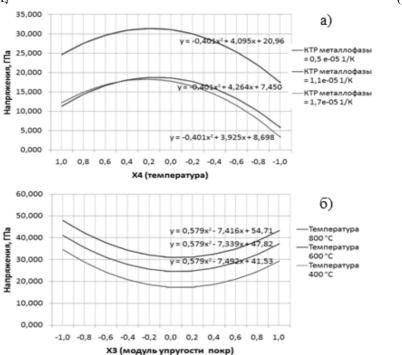


Рисунок 1 — Зависимость напряжений от КТР металлофазы и температуры спекания (а), от модуля упругости связки и температуры спекания (б)

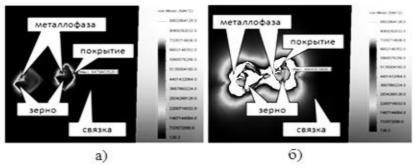


Рисунок 2 – Эпюры полей минимальных (а) и максимальных (б) напряжений, наблюдаемых в серии опытов по спеканию кругов в выбранном диапазоне факторов

Таблица 2 – Принятые значения факторов для процесса высокоскоростного шлифования

Уровни факторов	КТР металлофа- зы		Модуль упруго- сти связки		Модуль упруго- сти ОМ		Температура	
	Натуральное значение 1/К	Кодированное значение X_1	Натуральное значение H/m^2	Кодированное значение X_2	Натуральное значение МПа	Кодированное значение X_3	Натуральное значение °C	Кодированное значение X_4
1	1,7e-05	+1	9e+011	+1	800	+1	800	+1
0	1,1e-05	0	5,05e+011	0	600	0	600	0
-1	0,5e-05	-1	1,1e+011	-1	400	-1	400	-1

На рисунке 3 проиллюстрированы результаты модельных экспериментов по расчету зависимостей напряжений в зоне микрорезания от модуля упругости связки, и обрабатываемого материала при варьировании КТР металлофазы.

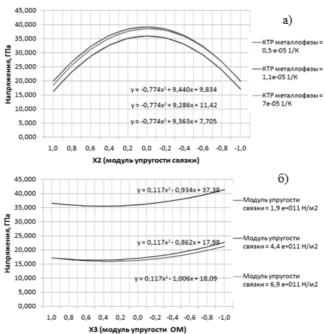


Рисунок 3 — Зависимость напряжений, возникающих в зоне микрорезания от модуля упругости связки и КТР металлофазы (a); модуля упругости связки и обрабатываемого материала (б)

Анализ полученных зависимостей позволил установить, что максимальный уровень напряжений, возникающих в системе «зерно – металлофаза – связка – ОМ» наблюдается для значений модуля упругости связки, соответствующему нулевому уровню данного параметра (см. табл.2). Модуль упругости обрабатываемого материала является практически незначимым параметром и в сравнении с КТР металлофазы зерна и модуля упругости связки не оказывает заметного влияния на величину возникающих в системе напряжений.

На рисунке 4 представлена визуализация полей напряжений, возникающих в системе «зерно – металлофаза – связка – ОМ» при шлифовании.

В результате анализа распределений напряжений, возникающих при шлифовании в системе «зерно – металлофаза – связка – ОМ» для случая пористой связки установлено, что при определенном сочетании значений выбранных независимых факторов зона максимальных напряжений смещается из области контакта зерна с обрабатываемым материалом в зону расположения наиболее тонких мостиков связки между порами.

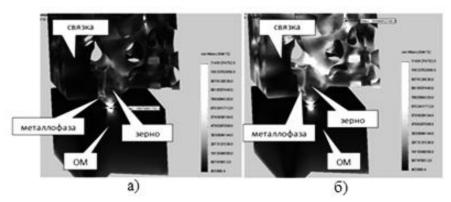


Рисунок 4 — Эпюры полей минимальных (a) и максимальных (б) напряжений, наблюдаемых в серии опытов по шлифованию в выбранном диапазоне факторов

Выводы

С использованием метода 3D моделирования исследованы процессы спекания алмазных кругов и шлифования в выбранном диапазоне варьирования основных характеристик абразивного инструмента и режимов шлифования, а также широкого спектра обрабатываемых материалов.

В ходе проведенного цикла модельных экспериментов при реализации метода математического планирования получены математические модели, описывающие процессы спекания алмазных кругов и шлифования. Анализ полученных зависимостей напряжений, возникающих в системе «зерно – металлофаза – связка – ОМ» от модуля упругости связки позволил установить, что максимального уровня напряжения достигают при значений модуля упругости связки $5,05e+011~\text{H/m}^2$. Модуль упругости обрабатываемого материала практически не оказывает заметного влияния на величину возникающих в системе напряжений. Установлено, что наиболее значимым фактором, влияющим на НДС исследуемых систем, является КТР металлофазы. Показано, что присутствие металлофазы с ТКЛР = 0,5e-005~1/K приводит к увеличению напряжений в 2-2,5 раза.

Показано, что фактор пористости связки (количество, размеры пор и характер их распределения) в большой степени определяет возникновение критических напряжений, приводящих к выкрашиванию затупившихся зерен, а следовательно обусловливает возможность управления процессом самозатачивания за счет регулирования характеристик пористости связки. Принимая во внимание естественную пористость связки, показано, что даже при соотношении модуля упругости связки и обрабатываемого материала близком 4,4: 1, зона максимальных напряжений располагается на наиболее тонких мостиках связки между порами.

Список использованных источников: 1 *Худобин Л.В., Унянин А.Н.* Минимизация засаливания шлифовальных кругов. – Ульяновск: УлГТУ, 2007. – 298 с.; 2 *Переверзев П.П.* Взаимосвязь производительности и точности операций шлифования с интенсивностью затупления кругов из различных абразивных материалов. – Автореф. дис. канд. техн. наук, Челябинск, 1981. – 23 с.; 3. *Oliveira J.F.G, Silva E.J. and other.* Industrial challenges in grinding // Annals of the CIRP. – v. 58. – p.663–680; 4 *Jackson M.J., Barlow N., and other.* Computer Aided Design of High-Performance Grinding Tools //Proceedings of the Institution of Mechanical Engineers (London), Part B //Journal of Engineering Manufacture. – 2001. – v. 215. – p. 583-588; 5 *Gol'din V.V. , Zhuravsky V. G. and other.* CALS technologies and tolerant translators Automation and Remote Control. – v. 68. – № 4. – p. 710-726; 6 *Karpuschewski B., Wehmeier M. and other.* Grinding Monitoring System Based on Power and Acoustic Emission Sensors // Annals of the CIRP. – 2000. – v.49. – № 1. –p.235-240.

Поступила в редколлегию 12.06.2012