В.Б.САМОРОДОВ, д-р. техн. наук, А.В.РОГОВ, Н.С. ЯРМАК

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ГИДРОМЕХАНИЧЕСКИХ ПОТЕРЬ И КПД В БЫСТРОХОДНЫХ ГИЛРООБЪЕМНЫХ МАШИНАХ С ШАРОВЫМИ ПОРШНЯМИ

У статті розроблена математична модель гідродинамічних втрат в радіально – поршневих гідромашинах з сферичними поршнями. Адекватність розробленої математичної моделі підтверджена порівняльним аналізом з експериментальними даними.

Рассмотрим основные виды механических и гидравлических потерь объемной гидромашины с шаровыми поршнями [1,2,3] – элемента гидрообъемной передачи (ГОП), – конструктивная схема которой приведена на рис. 1. Такого типа гидромашины выпускаются серийно фирмой "Martin-Marietta" (США) и эффективно используются в трансмиссиях серии НМРТ для боевых гусеничных машин пехоты и тягачей. В дальнейшем для описания давлений р, угловых скоростей ω , эксцентриситетов E, потерь ΔN и КПД η первый индекс "1" будет относиться к регулируемой гидромашине (ГМ1), индекс "2" – к нерегулируемой гидромашине (ГМ2).

Потери мощности на трение качения в паре поршень-шар-статор (позиции 3, 15 на рис. 1) для всего поршневого комплекта, состоящего из п поршней, осредняются за период $T=2\pi/n\omega$:

$$N_{11}^* = \frac{1}{T} \int_{0}^{T} \sum_{i=1}^{n} N_{1i} f_{1i} R_1 \omega dt .$$
 (1)

Здесь реакция N_{1i} определяется в каждый момент времени для каждого из п поршней; f_{1i} – коэффициент трения между шаром и статором.

Потеря мощности в паре поршень-шар-цилиндр (позиции 9,15 на рис. 1) при вращении шара в цилиндре с линейной скоростью $\omega R_1/R_3$ (R_1,R_3 – радиусы статора и поршня-шара) в зоне контактной реакции N_{2i} между поршнем-шаром и цилиндром ротора осредняется за время T по всему поршневому комплекту и имеет вид:

$$N_{12}^* = \frac{1}{T} \int_0^T \sum_{i=1}^n N_{2i} f_{2i} R_1 \omega dt , \qquad (2)$$

где f_{2i} – коэффициент трения в паре поршень-шар – цилиндр ротора. Момент трения в роликовом подшипнике ротора (позиции 6,12) [4]:

$$M_{\rm S} = f_{\rm H} \cdot 10^{-8} \left[\frac{30 \text{v}\omega}{\pi} \right]^{2/3} D_1^3 + f_{\rm j} P_{\rm r} D_1, \tag{3}$$

где $f_{\text{д}},\,f_{\text{j}}$ – коэффициенты, зависящие от типа подшипника; D_{l} – средний диаметр окружностей роликов; ν – кинематический коэффициент вязкости

смазки; P_r – результирующая нагрузка на ротор. Потери мощности на трение в подшипнике ротора, осредненные за время T:

$$N_{13}^* = f_{\pi} \cdot 10^{-8} \left[\frac{30 \text{v}\omega}{\pi} \right]^{2/3} D_1^3 \omega + f_j P_r D_1 \frac{1}{T} \int_0^T P_r dt.$$
 (4)

Рис. 1. Конструктивная схема гидрообъемной передачи на базе быстроходных гидромашин радиально-поршневого типа с шаровыми поршнями. 1 – корпус; 2 – цапфа; 3,16 – опорные статорные кольца; 4,15 – шаровые поршни; 5 – магистраль подпитки; 6,12 – подшипники качения; 7 – ротор гидромотора; 8 – ось; 9 – ротор гидронасоса; 10 – центральное отверстие; 11 – подшипник; 13,14 – приводные шестерни; 17 –сервомеханизм управления.

Дифференциал момента dM(ф) жидкостного трения в зазоре между ротором и валом (позиции 2,9) обусловлен работой против касательных напряжений в тонком слое рабочей жидкости между вращающимся ротором и неподвижной цапфой и вычисляется следующим образом [3,5]:

$$dM(\phi) = 2\overline{\mu}\omega R^{3} \frac{\widetilde{L}d\phi}{\delta(1 - \varepsilon\cos\phi)} = \tau dS \cdot R,$$

здесь τ – касательные напряжения в слое рабочей жидкости с зазором $h(\phi) = \delta(1-\epsilon\cos\phi);~\delta$ – радиальный зазор при концентричном положении цапфы и ротора; ϵ – коэффициент эксцентричности зазора с учетом упругой деформации роликового подшипника ротора; μ – коэффициент динамической вязкости; R – радиус цапфенной оси; \widetilde{L} – эквивалентная ширина пояска тре-

ния. В текущий момент времени t, когда вектор мгновенной силы P_r определяет величину и место минимального зазора h_{min} в распределителе, интегральный момент жидкостного трения по обоим уплотняющим пояскам шириной \widetilde{L} имеет вид [3, 5]:

Рис. 2. К расчету момента $M_{\mathbb{X}}$.

Рис. 3. К определению момента М_{ІІІ}.

$$\begin{split} M_{\mathbb{K}}(t) &= 4\overline{\mu}\omega R^{3}\frac{\widetilde{L}}{\delta}\int_{0}^{\pi}\frac{d\phi}{1-\epsilon\cos\phi} = 4\overline{\mu}\omega R^{3}\frac{\widetilde{L}}{\delta}\frac{2}{\sqrt{1-\epsilon^{2}}}\operatorname{arctg}\frac{(1+\epsilon)tg\frac{\phi}{2}}{\sqrt{1-\epsilon^{2}}}\bigg|_{0}^{\pi} = \\ &= 8\overline{\mu}\omega R^{3}\frac{\widetilde{L}}{\delta\sqrt{1-\epsilon^{2}}}\Bigg[\frac{\operatorname{arctg}(1+\epsilon)\cdot\infty}{\sqrt{1-\epsilon^{2}}} - \operatorname{arctg0}\Bigg] = 4\overline{\mu}\omega R^{3}\frac{\pi\widetilde{L}}{\delta\sqrt{1-\epsilon^{2}}}. \end{split} \tag{5}$$

Осредненные за время Т потери мощности на жидкостное трение в уплотнении цапфенного распределителя с учетом (5) имеют вид:

$$N_{14}^* = \frac{4\pi\omega\widetilde{L}R^3}{\delta T} \int_0^T \frac{dt}{\sqrt{1-\epsilon^2(t)}}.$$
 (6)

При работе ГОП рабочая жидкость, дросселируясь через уплотнение распределителя под действием центробежных сил, попадает в плоский кольцевой зазор величиной $h_{\scriptscriptstyle T}$ торцевой поверхности ротора 9 и щекой распределителя цапфы 2. При малых конструктивных зазорах $h_{\scriptscriptstyle T}$, сравнительно низких температурах (например, при запуске ГОП в условиях низких температур) и высоких угловых скоростях ротора гидромашины, потери на жидкостное трение могут серьезно повлиять на общий механический КПД гидропередачи. На рис. 3 показана торцевая поверхность ротора с внутренним радиусом $R_{\scriptscriptstyle T}$ и внешним $R_{\scriptscriptstyle 2}$. Дифференциал момента жидкостного трения в зазоре между ротором и плоской щекой распределительной цапфы: $dM = \tau \cdot dS \cdot R$, $\tau = \mu \omega R/h_{\scriptscriptstyle T}$, где τ – касательное напряжение в слое жидкости, а $dS = 2\pi R \cdot dR$ – кольцевой дифференциал площади. Момент жидкостного трения $M_{\rm III}$ в указанной паре имеет вид:

$$M_{III} = \mu \frac{\omega}{h_{T}} 2\pi \int_{R_{T}}^{R_{2}} R^{2} dR = \frac{2\pi}{3h_{T}} \mu \omega (R_{2}^{3} - R_{r}^{3}).$$
 (7)

Потери мощности на жидкостное трение в зазоре между плоской кольцевой торцевой поверхностью ротора гидромашины и щекой распределительной цапфы вычисляются по формуле:

$$N_{15}^* = \frac{2\pi}{3h_r} \mu \omega^2 \left(R_2^3 - R_r^3 \right)$$
 (8)

Оценим барботажные потери на отдельной гидромашине следующим образом. Пусть в стационарном режиме работы гидромашины внешние утечки (в поршневом комплекте $Q_{\text{порш}}$ и в распределителе $Q_{\text{расп}}$) имеют общую массу m_0 . Эти утечки отводятся откачивающим насосом через фильтры и теплообменник в сливной бак и компенсируются насосом подпитки, все время присутствуя в картере ГОП. Тогда кинетическая энергия этой перемешивающейся массы $K = 0.5 m_0 \widetilde{V}^2 = 0.5 m_0 \left(\omega \overline{R} \right)^2$, а мощность, потерянная на барботаж этой массы, имеет вид (усредненный за время T):

$$N_{16}^* = \frac{p(Q_{\text{пориг}} + Q_{\text{расп}})(\omega \overline{R})^2}{2} = \frac{\rho(\omega \overline{R})^2}{2T} \int_0^T \left(\sum_{j=1}^n Q_j + Q_{\text{расп}}\right) dt, \tag{9}$$

где р – плотность рабочей жидкости, \overline{R} – некоторый средний приведенный радиус вращающихся частей гидромашины, по которой движется основная масса перемешиваемой жидкости; Q_i – утечки через j-ый поршень-шар.

Гидравлические потери давления на преодоление местных сопротивлений обусловлены в основном деформацией потока рабочей жидкости при изменении его скорости. Эти потери равны [5,6]:

$$\Delta p = \sum_{i=1}^{\zeta} \Delta p_i = \frac{\rho}{2} \sum_{i=1}^{\zeta} \xi_i \frac{Q_i^2}{F_i^2} = \frac{\rho}{2} \sum_{i=1}^{\zeta} (\xi_i V_i)^2,$$
 (10)

где ξ_i , F_i — соответственно коэффициент 1-го местного сопротивления и площадь его поперечного сечения, через которую проходит расход Q_i ; ζ — число местных сопротивлений. Указанные потери для ГМ1 и ГМ2 таковы:

$$\Delta \mathbf{p}_{\Sigma} = 2 \left(\Delta \mathbf{p}_{1_{\mathrm{H}}} + \Delta \mathbf{p}_{2_{\mathrm{H}}} + 2 \Delta \mathbf{p}_{\mathrm{K}} + \Delta \mathbf{p}_{\mathrm{M}} \right) \tag{11}$$

где $\Delta p_{1\pi}$, $\Delta p_{2\pi}$ — среднеинтегральные потери давления в цилиндре ГМ1 и ГМ2 за рабочий ход шара-поршня; Δp_{κ} — потеря давления при повороте потока жидкости (типа колено) на 120^{0} в полости нагнетания для входа в одну из четырех одинаковых по конфигурации и площади F магистралей; $\Delta p_{\rm M}$ — потеря давления в каждой из четырех магистралей, как прямом трубопроводе. Строго говоря, перепад давления на ГМ2 Δp_{2} = Δp_{1} — Δp_{Σ} .

Скорость шара-поршня в цилиндре $V_i = -E\omega\sin\gamma_i$ (γ_i – угол поворота поршня), откуда среднеинтегральная скорость движения жидкости в цилиндре имеет вид:

$$\overline{V}_{i} = -\frac{1}{\pi} \int_{0}^{\pi} E \omega s lm \gamma_{i} d\gamma = \frac{2E\omega}{\pi}.$$
 (12)

Среднеинтегральная скорость рабочей жидкости \overline{V}_i на входе в окно втулки (сужение потока) равна $\overline{V}_i S_{I\!\!\!\!\!\perp}/S_{_{OTB}}$, где $S_{_{I\!\!\!\perp}}$ и $S_{_{OTB}}$ – площадь цилиндра и отверстия соответственно. Тогда в соответствии с руководством [6] с учетом (12) для ГМ1:

$$\Delta p_{1II} = \frac{\rho}{2} \xi_1 \left(\frac{2E_1 \omega_1 R_3^2}{S_{\text{otb}}} \right)$$

где

$$\xi_1 = 0.5 \left[1 - \frac{\pi R_3^2}{(b - 2r)^2 + 4(b - 2r)r + \pi r^2} \right].$$
 (13)

Здесь b, r – конструктивные параметры окна цилиндра. Для нерегулируемой Γ M2:

$$\Delta p_{2II} = \frac{\rho}{2} \xi \left(\frac{2E_{2 \max} \omega_2 S_{\text{orb}}}{R_3^2} \right)^2.$$
 (14)

Потери давления в магистралях с учетом четырех магистралей высокого и четырех магистралей низкого давления оцениваются формулой [6]:

$$\Delta p_{\rm M} = 0.025 \frac{L_{\rm M}}{D_{\rm M}} V_{\rm M}^2 \frac{\rho}{2}; \tag{15}$$

$$V_{\rm M} = \frac{Q_{\rm T} - \sum \Delta Q}{\pi D_{\rm M}^2},\tag{16}$$

где $L_{\rm M}$, $D_{\rm M}$ – длина и диаметр магистрали; $V_{\rm M}$ – средняя скорость рабочей жидкости в магистрали; $Q_{\rm T}$ – теоретический расход гидромашины, работающей в режиме гидронасоса; $\sum \Delta Q$ – суммарные объемные потери в ней.

Механический КПД регулируемой ГМ1 η_{1M} и нерегулируемой ГМ2 η_{2M} могут быть представлены следующим образом [1,3,6]:

$$\eta_{1M} = \frac{N_{1T}}{N_{1T} + \sum N_{1i}^*} = \frac{N_1 - \sum N_{1i}^*}{N_1} = \frac{M_{1T}}{M_{1T} + \sum \Delta M_1} = 1 - \frac{\sum \Delta M_1}{M_1}; \quad (17)$$

$$\eta_{2M} = \frac{N_{2T} - \sum N_{2i}^*}{N_{2T}} = \frac{N_2}{N_2 + \sum N_{2i}^*} = 1 - \frac{\sum \Delta M_2}{M_{2T}} = \frac{M_2}{M_2 + \sum \Delta M_2}.$$
 (18)

Здесь
$$\Delta N_1 = \sum_{i=1}^6 {N_{11}}^*$$
, $\Delta N_2 = \sum_{i=1}^6 {N_{2i}}^*$, $\sum_{i=1}^6 \Delta M_1$, $\sum_{i=1}^6 \Delta M_2$ – суммарные ме-

ханические потери мощности и моментов для ГМ1 и ГМ2. В нашем случае эти потери даются формулами (1), (2), (4), (6), (8), (9). N_1 , M_1 – вход-

ная мощность и момент на валу ГМ1; N_2 , M_2 — выходная мощность и момент на валу ГМ2. N_{1T} , N_{2T} — теоретические мощности ГМ1 и ГМ2 соответственно:

Гидравлический КПД ГОП [6] с учетом формул (10)-(16):
$$\eta_{\Gamma} = 1 - \Delta p_{\Sigma} / (p_1 - p_0). \tag{19}$$

Гидромеханический КПД ГОП имеет известный вид $\eta_{\rm M}=\eta_{\rm 1M}\eta_{\rm 2M}\eta_{\rm \Gamma}$. Локальные потери моментов на механическое и гидродинамическое трение на регулируемой ГМ1 показаны на рис. 4 в трехмерном пространстве "давление-угловая скорость-момент потерь", охватывающем весь возможный диапазон работы гидромашины для следующих исходных данных: $E=0.012~{\rm M};~T=100~{\rm ^{0}C};~\mu=0.0144~{\rm Ha~c};~p=910~{\rm kr/m^{3}};~D_{\rm M}=0.028~{\rm M};~L_{\rm M}=0.126~{\rm M};~R_{\rm 1}=0.16~{\rm M};~R_{\rm 2}=0.145~{\rm M};~R_{\rm 3}=0.5d=0.03175~{\rm M};~\Pi=0.001;~f_{\rm 2}=0.02;~D_{\rm 1}=0.15~{\rm M};~\delta=20~10^{-6}~{\rm M};~h_{\rm r}=0.0025~{\rm M};~R_{\rm r}=0.0065;~S_{\rm отв}=0.00088~{\rm M^{2}};~p_{\rm 0}=1.5~{\rm M}$ Па. Указанные моменты потерь, умноженные на угловую скорость ГМ1, дают соответствующие потери мощности.

Адекватность математической модели проверялась на основе экспериментальных данных, полученных на комплексном испытательном стенде силами ХКБМ им. А.А. Морозова и ЗАО "НИИ Гидропривод". В таблище на множестве экспериментальных режимов для разных угловых скоростей, давлений, эксцентриситетов и температур рабочей жидкости сведены результаты расчета теоретического момента M_T и входного $M_{\rm BXT}$, механического КПД $\eta_{\rm M}$, а также экспериментальные значения входного момента $M_{\rm BX}$, интегрально учитывающие гидромеханические потери и соответствующие значения относительной погрешности расчета Δ .

Сравнительные расчетные и экспериментальные результаты.

ω	P ₁	P ₀	E	T	\mathbf{M}_{T}	$\eta_{_{\mathbf{M}}}$	$\mathbf{M}_{\mathbf{BXT}}$	M_{BX}	Δ
рад/с	МΠа	МΠа	MIM	သ	Ни		Н∙м	Н-м	z
252.58	1.68	1.01	2.76	52.10	16.70	0.1270	131.49	127.53	9.1
188.18	1.51	0.99	2.76	50.50	13.02	0.1299	100.72	92.21	9.2
126.99	1.40	1.02	2.76	50.10	9.58	0.1375	69.67	68.67	1.5
251.74	2.03	1.02	5.76	51.30	52.80	0.3066	172.21	173.64	-0.8
221.27	1.97	1.04	5.88	50.90	43.72	0.3180	156.34	152.06	2.0
183.33	1.33	1.06	5.88	48.70	46.58	0.3283	141.83	153.04	-7.3
127.13	1.74	1.10	5.88	48.20	34.02	0.3338	100.12	38.10	2.1
251.35	2.43	1.02	3.12	47.30	116.88	0.4653	251.13	256 04	-1.9
220.22	2.36	1.04	3.12	45.10	109.58	0.4646	235.83	231.52	1.3
189.53	2.32	1.07	9.12	43.10	103.09	0.4726	218.14	225.63	-3.3
126.60	1.36	1.01	3.12	41.80	78.73	0.4315	160.19	159.90	0.2
65.66	1.61	1.05	3.12	41.10	46.27	0.4331	33.83	84.37	11.2
131.00	2.68	0.33	11.88	36.20	181.88	0.5531	328.81	345.31	-4.8
186.80	2.34	0.87	10.32	28.10	135.35	0.5086	384.06	337.31	-3.3
64.51	1.72	1.05	12.00	109.00	46.58	0.3283	141.89	147.09	-7.3
183.12	2.03	0.31	12.00	113.30	128.16	0.8231	154.53	142.25	8.7
150.37	2.01	1.00	12.00	90.60	118.01	0.7331	138.71	150.09	-7.6

Рис. 4. Механические и гидродинамические потери моментов на механическое и гидродинамическое трение в ГМ1.

Список литературы: 1. *Петров В.Г.* Гидрообъёмные трансмиссии самоходных машин. — М.: Машиностроение, 1988. — 248 с. 2. Объемные гидромеханические передачи: Расчет и конструирование / О.М. Бабаев, Л.И. Игнатов, Е.С. Кисточкин и др. — Л.: Машиностроение, 1987. — 256 с. 3. Динамика транспортно-тяговых колесных и гусеничных машин / Александров Е.Е., Лебедев

А.Т., Самородов В.Б. и др. – Харьков.: ХГАДТУ, 2001. – 642 с. 4. Бейзельман Р.Д., Цыпкин Б.В., Перель А.Я. Подшипники качения: Справочник. – М.: Машиностроение. – 1975. – 572 с. 5. Лой-иянский Л.Г. Механика жидкости и газа. – М.: Наука, 1970. – 904с. 6. Объемные гидравлические привода / Т.М. Башта, И.З. Зайченко, В.А. Ермаков и др. – М.: Машиностроение, 1969. – 627 с. Поступила в редколлегию 22.05.02

УДК 539.3

Н.А.АНДРЕЄВА, НАУ України, Київ

ДЕЯКІ РЕЗУЛЬТАТИ ДОСЛІДЖЕННЯ ГРАНИЧНОГО ШАРУ НА ОБТІЧНІЙ ПОВЕРХНІ МЕТОДОМ ТЕРМОПАРНОГО ТЕРМО-АНЕМОМЕТРА

Подані результати теоретичних і експериментальних досліджень стану граничного шару на обтічних поверхнях на основі термопарного термоанемометра (ТТА) – вимірювача малих швидкостей потоку рідини і газу. Експериментально обгрунтована можливість використання ТТА як індикатора переходу ламінарної течії в турбулентну і фіксації відриву граничного шару , а також використання ТТА як індикатора відриву граничного шару на несучих поверхнях літального апарату (ЛА).

При русі тіл у повітрі чи рідині, наприклад при русі ЛА, відбувається взаємодія тіл з потоком, який обтікає, що впливає на рух цих тіл. Результатом силової взаємодії тіла з потоком є також зміна фізичних характеристик потоку, основною з яких є швидкість (v). Тому серед гідроаеродинамічних досліджень одне з головних місць займають дослідження і розробка методів визначення швидкості потоку, що обтікає тіло. Цей параметр (v) входить практично в усі формули аеродинаміки.

Існує безліч різних методів і засобів виміру швидкості потоку в залежності від умов виміру. Для виміру пульсаційних швидкостей ізотермічних потоків найбільше застосування одержав метод термоанемометра. І в даний час існують різні типи датчиків термоанемометра в залежності від розв'язуваних задач. Принцип роботи цих датчиків полягає у взаємодії їх з потоком, в результаті якого в залежності від швидкості омиваючого датчик потоку, з датчика термоанемометра відбирається певна кількість теплоти, що приводить до зміни тих чи інших параметрів електричного кола датчика [1,2,3].

Метод виміру швидкості потоку рідини чи газу на основі термопарного термоанемометра (ТТА) [4] має ряд переваг над існуючими методами, що дозволяє розширити коло задач, зв'язаних з визначенням швидкості. Цими перевагами ϵ : механічна міцність, малі розміри, проста конструкція, мала інерційність, що дозволяє використовувати ТТА для розв'язку задач, що неможливо розв'язати за допомогою інших методів і засобів, чи розв'язок ϵ дуже складним. А саме:

- вимір швидкості не тільки в потоках газу чи рідини, а також на натур-