АКТИВАЦИЯ ПОРИСТЫХ ГРАФИТОВЫХ МАТЕРИАЛОВ ОКСИДАМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ

Тульская А.Г., Мардупенко А.А., Сенкевич И.В. Национальный технический университет «Харьковский политехнический институт», г. Харьков

своей природе Активация инертного ПО графита осуществлялась в две стадии. На первой стадиипроводилась пропитка образца пористого графита ПГ-50 в растворе концентрированной нитратной кислоты в течение 10 минут с последующим прокаливанием в атмосфере азота при температуре 1100...1150 К. На второй стадииосуществлялось нанесение каталитически активного покрытия оксидами переходных металлов-RuO₂, MoO₃, WO₃путем пропитки образца в растворе, содержащем соединение металла, последующего переходного термического И разложения. Преимуществами такого метода являются возможность регулирования состава композиционного покрытия, высокая стойкость в агрессивных средах, механическая прочность и высокая степень сцепления с основой, высокая электропроводность. Состав растворов приведен в таблице.

Таблица — Состав растворов для нанесения каталитически активного покрытия пористого графита

Покрытие	Компоненты раствора	Содержание компонентов, (г·дм ⁻³)
RuO ₂	Ru(OH)Cl ₃ HCl	130150 3036
MoO ₃	(NH ₄) ₆ Mo ₇ O ₂₄ NH ₄ OH	350400 1016
WO ₃	(NH ₄) ₂ WO ₄ NH ₄ OH	350400 1016

После пропитки графитовый анод снова подвергают термическому разложению без доступа кислорода при температуре 500...600 К. Это позволяет получить в порах графитаслой RuO_2 , MoO_3 или WO_3 , соответствующий раствору, в котором проводилась пропитка. Описанная методика активации пористого графита является перспективной для изготовления газодиффузионных графитовых электродов.