Таким образом, можно сделать вывод о том, что для получения равномерных покрытий на образцах имплантатов сложной формы целесообразно использовать протондонорную добавку в концентрации 60-80 ppm. В результате экспериментов на металлической основе (сплав Ti-6A1-4V, также известный как ВТ-6) были получены равномерные осадки гидроксиапатита, которые затем были подвергнуты обжигу и оплавлению в атмосфере инертного газа. Полученное сплошное покрытие обладает отличной адгезией к основе и представляет собой кристаллическую фазу состава Са/Р ≈ 1,67.

ЛИТЕРАТУРА

- 1. Sam Zhang. Hydroxyapatite Coatings for Biomedical Applications. Series: Advances in Materials Science and Engineering. CRC Press, 2013. 463 p.
- 2. Синтезнанокристаллическихпленокгидроксиапатита / В.М. Иевлев, Э.П. Домашевская, В.А. Терехов, В.М. Кашкаров, В.М. Вахтель, Ю.Д. Третьяков, В.И. Путляев, С.М. Баринов, В.В. Смирнов, Е.К. Белоногов, А.В. Костюченко // Конденсированныесредыимежфазныеграницы. 2007. Т.9. \mathfrak{N}_{2} 3. С. 209-215.
- 3. Zude FENG, Qishen SU, Zuochen LI. Electrophoretic Deposition of Hydroxyapatite Coating. JMaterSciTechnol, 2003, 19(01): p. 30-32.
- 4. А.Ю. Бровин, А.И. Фесенко, В.И.Тычина. Нанесение гидроксиапатита на сплавы титана катафоретическим методом // Современные электрохимические технологии и оборудование: материалы докладов Международной научно-технической конференции, 24–25 ноября 2016 г. Минск: БГТУ, 2016. С.282-285

УДК 621.793

Б.И. Байрачный, проф., д-р техн. наук Ю.А. Желавская, научн. сотр, канд. техн. наук Н.А. Руденко, аспирант, А.М. Финогенов, студ. НТУ"ХПИ", Харьков

КИНЕТИЧЕСКИЕ ПАРАМЕТРЫ ОСАЖДЕНИЯ ФУНКЦИОНАЛЬНЫХ ПОКРЫТИЙ СПЛАВАМИ НИКЕЛЬ-ВАНАДИЙ И НИКЕЛЬ-ВОЛЬФРАМ

Сплавы никеля с вольфрамом и ванадием обладают высокой стойкостью к износу и каталитической активностью. Они с успехом используются вместо хромовых покрытий, осаждение которых имеет высокую экологическую опасность [1, 2]. Они также имеют высокую каталитическую активность при использовании в электросинтезе во-

дорода в качестве катодных материалов. Существующие электролиты осаждения сплавов Ni-W и Ni-V с использованием пирофосфатов и цитратов не обеспечивают стабильность технологических параметров, а количество ванадия и вольфрама в сплавах не превышает 0,5%. Сплавы никеля с вольфрамом и ванадием на стальную и медную основу возможно осаждать из кислых хлоридных электролитов. Добавками в хлоридные электролиты, которые обеспечивают наличие в сплавах вольфрама и ванадия, являются вольфраматы и ванадаты.

В данной работе изучены кинетические зависимости совместного осаждения никеля с вольфрамом и с ванадием из кислых хлоридных электролитов и влияние активирующих добавок на увеличение содержания этих компонентов в сплавах.

Для исследований использованы электролиты, состав которых приведен в таблице 1.

Таблица 1 – Состав электролитов и параметры электролиза

№	Состав электролита, $\Gamma/дм^3$	Параметры электролиза				Содержание
		рН	j, А/дм ²	t, ⁰ C	т, час	компонета в сплаве, %
1	NiCl ₂ ·6H ₂ O – 200 HCl – 100 NH ₄ VO ₃ (намет.) - 1	-1 ÷ 0	5 – 50	20 – 25	0,5	0,5
2	$ m NiCl_2\cdot 6H_2O-200$ $ m HCl-100$ $ m NH_4VO_3$ (на мет.) - 1 $ m Добавка \ орг.к-ты-2$	-1 ÷ 0	5 – 50	20 – 25	0,5	0,95
3	$NiCl_2 \cdot 6H_2O - 200$ $Na_2WO_4 - 15$ $H_3BO_3 - 20$	4,2 – 4,5	0,5 – 2	25 – 30	1	2,8

Кинетические характеристики осаждения сплавов установлены на основе анализа поляризационных зависимостей, а состав сплава определялся с помощью рентгеноструктурного анализа.

На рис. 1 приведены потенциодинамические зависимости осаждения сплава никель-ванадий.

В интервале потенциалов стального катода $E = -0.2 \div -1.0$ В скорость осаждения на начальной стадии возрастает незначительно, а при потенциалах отрицательнее E = -0.6 В она увеличивается от 10 до 30 А/дм². Процесс осаждения сплава сопровождается интенсивным выделением водорода на катоде.

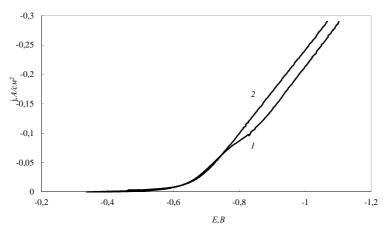


Рисунок 1 – Потенциодинамческие зависимости осаждения сплава Ni-V: 1 – без добавки; 2 – с добавкой.

При введении добавки органической кислоты в количестве 2 г/дм^3 величина катодной поляризации снижается на 50–100 мВ. Покрытие Ni-V формируется более мелкокристаллическим. Содержание ванадия в сплаве в присутствии добавки увеличивается с 0.5 до 0.95%. Механизм восстановления ванадия из данного электролита характеризуется ступенчатым восстановлением VO_3 - иона до металла [3].

На рис.2 показаны потенциодинамические кривые осаждения сплава Ni-W из хлоридного электролита. В отличии от осаждения чистого никеля (кр.1) катодные кривые характеризуются существенным торможением скорости осаждения сплава. В интервале потенциалов $E = -0.8 \div -1.1$ наблюдается торможение осаждения сплава, которое обусловлено ступенчатым восстановлением вольфрама из $WO_4^{2^-}$ - иона до металлического вольфрама. Из электролита содержащего $200~\text{г/дм}^3\text{NiCl}_2$ в сплав осаждается 2.5 - 2.8~% вольфрама. Осаждение сплава Ni-W как и сплава Ni-V характеризуется выходом по току, не превышающим 10%.

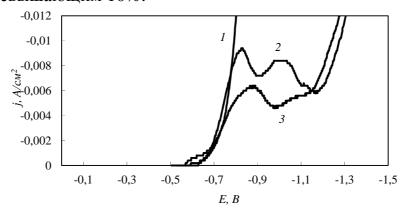


Рисунок 2 — Потенциодинамические зависимости осаждения сплава Ni-W из хлоридного электролита с содержанием NiCl₂·6H₂O, г/дм³: 1– 200; $2-200 \text{ (cWO_4}^{2-})$; $3-20 \text{ (cWO_4}^{2-})$

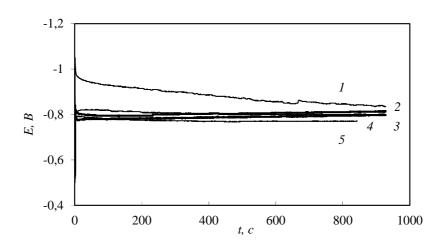


Рисунок 3 — Хронопотенциограммы осаждения сплава Ni-W из хлоридного электролита при j, A/gm^2 : 1 – 2,5; 2- 2; 3 - 1,4; 4 – 1; 5 - 0,5

Приведенные данные свидетельствуют о возможности осаждения сплавов Ni-V и Ni-W из кислых хлоридных электролитов, более простых по составу и стабильных в процессе работы.

ЛИТЕРАТУРА

- 1. Нанда Ту. Электроосаждение сплава никель-вольфрам. / М.Р. Павлов, В.Н. Кудрявцев // Успехи в химии и химической технологии. -2008. -T.22. -№8. -C. 67–70.
- 2. Каталітичні та захісні покриття сплавами і складними оксидами: електрохімічний синтез, прогнозування властивостей: монографія / М.В. Ведь, М.Д Сахненко. Харків: НТУ «ХПІ», 2010. 272 с.
- 3. Загальна та неорганічна хімія. Підр. для студ. вищ. навч. закл. / О.М. Степаненко, Л.Г. Рейтер, В.М. Ледовський, С.І. Іванов. К.: Пед. преса, 2000. 787 с.