

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

National Technical University «Kharkiv Polytechnic Institute»

Educational and Scientific Institute of Mechanical Engineering and Transport (MET)

Department Occupational and Environmental Safety

Methodical instructions for independent work
«Assessment of the situation in the event of an accident on water
objects. Part 1» in the discipline «Technogenic and Environmental
Safety in the Conditions of Industrial and Economic Activity»
for applicants for the second (master's) I
evel of higher education all forms of education

Kharkiv NTU KhPI 2024

Ministry of Education and Science of Ukraine National Technical University «Kharkiv Polytechnic Institute»

Educational and Scientific Institute of Mechanical Engineering and Transport (MET)

Department Occupational and Environmental Safety

Methodical instructions for independent work «Assessment of the situation in the event of an accident on water objects. Part 1» in the discipline «Technogenic and Environmental Safety in the Conditions of Industrial and Economic Activity» for applicants for the second (master's) level of higher education all forms of education

Approved by the editorial and publishing department protocol № 1 of 08.02.2024

Kharkiv NTU KhPI 2024 Methodical instructions for independent work «Assessment of the situation in the event of an accident on water objects. Part 1» in the discipline «Technogenic and Environmental Safety in the Conditions of Industrial and Economic Activity» for applicants for the second (master's) level of higher education all forms of education; Kharkiv. National Technical University «Kharkiv Polytechnic Institute»; Author-Uklad. Vambol S.O., Mezentseva I.O., Ilyinska O.I., Yevtushenko N.S. – Kharkiv: [b. v.], 2024. – 40 p.

Compilers: Vambol S.O.
Mezentseva I.O.
Ilyinska O.I.
Yevtushenko N.S.

Reviewer V. V. Berezuckiy

Department of Occupational and Environmental Safety

CONTENT

INTRODUCTION	5
Topic 1 Assessment of the situation in the event of an accident on a hydraulic structure	7
1.1 Individual tasks1.2 Example of a task1.3 Reference tables required for calculations	7 8 12
Topic 2 Predictive Assessment of Pollution of Open Water Sources by Emergency Chemically Hazardous Substances (CHS) in Emergency Situations	13
2.1 Individual tasks2.2 Example of the task2.3 Reference tables required for calculations	13 15 21
Topic 3 Determination of the necessary personal protective equipment, degassing substances and the number of employees to perform emergency rescue operations in the conditions of CHS contamination	23
3.1 Individual tasks3.2 Example of a task3.3 Reference tables required for calculations	23 25 28
Topic 4 Methodology for calculating the required number of vehicles and watercraft for evacuation of the population from the flood zone	29
4.1 Individual tasks4.2 Example of a task4.3 Reference tables required for calculations	29 31 36
SOURCES	37

INTRODUCTION

These methodological instructions are intended for the independent work of students studying the discipline "Technological and ecological safety in the conditions of industrial and economic activity" in order to clarify the methodology for calculating the assessment of the situation in the event of an accident on water bodies. According to the study and work plans of the specialty 263, the educational program of the II (master's) level of higher education "Occupational safety", as part of the study of the mandatory professional discipline "Technogenetic-ecological safety in the conditions of industrial and economic activity", students are expected to independently perform the calculation task. Methodical instructions contain practical tasks that will help students to master the modern problems of emergency situations.

Independent work of students of higher education is a form of organization of the educational process, which ensures their mastery of educational material in the time free from compulsory educational classes. The existence of this form of organization of the educational process in institutions of higher education is provided for by the Law of Ukraine "On Higher Education" (Article 50). The content of the independent work of a student of higher education in the academic discipline "Technogenetic-ecological safety in the conditions of industrial and economic activity" is determined by its program, these methodical instructions for independent work, tasks and instructions of the teacher.

The purpose of independent work is:

- assimilation of theoretical knowledge;
- formation of general educational skills and abilities;
- formation of motivation for self-education during professional activity;
- development of cognitive interests and abilities

- development of critical thinking and abilities to check the information received from various sources;
- increasing the efficiency of the educational process by organizing out-ofclassroom training in accordance with the personal abilities of each student of higher education.

Independent work is provided by a system of educational and methodological tools provided for studying the academic discipline, namely:

- electronic materials that are placed in the system of electronic education support;
 - textbooks, educational and methodical guides, lecture, workshops, etc.;
- scientific and professional monographic and periodical literature recommended by the responsible scientific and pedagogical worker.

The main forms of independent work are:

- revision of lecture materials;
- working with textbooks, manuals and other methodical materials;
- work in information networks:
- development of additional literature;
- work with periodicals;
- preparation and presentation of abstracts;
- preparation of individual calculation tasks issued by the teacher;
- preparation for consultation with the teacher;
- preparation for a test or exam.

Since in recent years, students have been studying online, when communication between students and teachers is difficult due to low-quality Internet connections, the importance of independent work has increased.

All this required the preparation and publication of improved methodological instructions for independent work on the calculation of the assessment of the situation in the event of an accident on water bodies.

TOPIC 1

ASSESSMENT OF THE SITUATION IN THE EVENT OF AN ACCIDENT ON A HYDRAULIC STRUCTURE

1.1. Individual tasks

The purpose of the task is to master the practical skills of calculating the assessment of the situation in the event of an accident on a hydraulic structure

It is necessary to assess the situation in the event of an accident on the hydraulic structure, namely the destruction of the dam.

With the help of calculations, determine the following parameters:

- maximum breakthrough wave height *h*, *m*;
- maximum flow velocity of the breakthrough wave *V*, *m/s*;
- average velocity of water flow at the flooded object V_{cp} , m/s;
- flooding height of the object h_{3am} , m;
- time of arrival of the front of the breakthrough wave $t_{\phi p}$, h (hours);
- time of arrival of the crest of the breakthrough wave t_{zp} , h (hours);
- duration of flooding of the object τ , h (hours).
- total losses among the population that found themselves in the zones of catastrophic flooding N_{emp} (people), and the distribution of these losses into irretrievable $N_{emp\ on}$ (people) and sanitary $N_{emp\ can}$ (people) losses.

Table 1. 1 – Task Options

Variant	<i>L</i> , <i>m</i>	<i>h</i> ₀ , м	h _м , м	Н ₀ , м	<i>l,</i> м	$H_{n,M}$	Н _м , м	<i>b</i> _к , м	В, м	Snep, M^2	N _{зат} , people	Time of day
1,11,21	5000	5	2	50	154	170	165	140	154	162	5000	day
2,12,22	5000	2,5	1,2	50	140	170	165	145	70	163	5100	day
3,13,23	5000	2,5	0,7	25	120	170	165	100	30	164	5200	day
4,14,24	10000	2	0,6	20	154	170	169	45	154	165	5300	day
5,15,25	10000	1	1	20	140	170	169	100	70	166	5400	day
6,16,26	10000	5	1,3	50	120	180	170	100	30	167	5500	day
7,17,27	10000	2,5	0,4	25	154	180	170	100	154	168	5600	day
8,18,28	20000	2	0,7	20	140	180	178	100	70	169	5700	day
9,19,29	20000	5	1	50	120	180	160	100	30	170	5800	day
10,20,30	20000	2,5	0,3	25	154	180	160	100	154	180	5900	day

1.2 Example of the task

To assess the situation during the destruction of the dam, it is necessary to form a table of the initial data of the object (Table 1.2)

Table 1. 2 – Imprint

Parameter name, designation, and dimension	Value
Removal of this section of an industrial facility <i>L</i> , <i>m</i>	8000
Average depth of the river in the downstream of the dam h_0 , m	8
The height of the object in relation to the river level in this alignment is h_M , m	2
Height of the water level in the upper reaches of the dam H_0 , m	80
Dam length <i>l</i> , <i>m</i>	154
Absolute height of the river bottom surface in the downstream H_n , m	227
Absolute height of the surface of the river bottom in the alignment of the industrial facility H_{M} , m	219
Width of the river in the alignment of the industrial facility b_k , m	140
The size of the dam of the hydro complex <i>B</i> , <i>m</i>	154
Area of the wetted perimeter S_{nep} , m^2	162
Number of people in catastrophic flood zones N_{3am} , people	5000
Time of day	day

Calculation

1. Determine the relative value of the dam hole:

$$B_{6i\partial H} = B / l = 154 / 154 = 1.0$$

2. Determine the value of the hydraulic slope of the water surface in this section of the river:

$$i = (H_n - H_M)/L = (227 - 219)/8000 = 0,001$$

3. Determine the auxiliary parameter of the value of the hydraulic slope of the water surface in this section of the river Θ :

$$\theta = i \cdot L / H_0 = 0.001 \cdot 8000 / 80 = 0.1$$

4. According to Table 1.3 Determine the size coefficients:

$$A_1 = 300$$
, $B_1 = 60$, $A_2 = 62$, $B_2 = 29$.

5. Determine the height of the breakthrough wave in the alignment of the object:

$$h = \frac{A_1}{\sqrt{B_1 + L}} = \frac{300}{\sqrt{60 + 8000}} \sim 3.3 \ m$$

6. Determine the maximum velocity of the breakthrough wave in the alignment of the object:

$$V = \frac{A_2}{\sqrt{B_2 + L}} = \frac{62}{\sqrt{29 + 8000}} \sim 0.7 \ m/s$$

7. Determine the height of flooding of the object:

$$h_{3am} = h - h_{M} = 3, 3 - 2, 0 = 1.3 m.$$

8. Determine the average flood height:

$$h_{cp} = S_{nep}/b_{\kappa} = 162/140 = 1,2 \text{ m}.$$

9. Determine the average water flow rate at the flooded facility:

$$V_{cp} = h_{3am}/h_{cp} = 1.3 / 1.2 = 1.1 \text{ m/s}.$$

10. According to Table 1. Figure 4 determines by interpolation the time of arrival of the breakout wave front to the object:

$$t_{\phi p} = 0.1, h \ (hours).$$

11. According to Table 1. determines by interpolation the time of arrival of the crest of the breakthrough wave to the alignment of the object:

$$t_{2p} = 0.2 + (0.4 - 0.2)/(10 - 5) \cdot (8 - 5) = 0.32$$
, h (hours).

12. Define the auxiliary parameter *k*:

$$k = H_0/h_0 = 80/8 = 10.$$

13. Table 1.4 is used to determine the auxiliary coefficient

$$\beta = 14.$$

14. Determine the duration of flooding of the territory in the area of the object after the arrival of a breakthrough wave in this direction:

$$\tau = \beta * (t_{rp} - t_{\phi p}) * (1 - \frac{h_m}{h}) = 14 * (0.32 - 0.1) * (1 - \frac{2}{3.3}) = 1.2 \ hours$$

15. We determine the total losses among the population and their distribution into irretrievable and sanitary.

Total losses:

$$N_{loss} = 0.2*N_{3am} = 0.2*5000 = 1000 people$$

Irretrievable losses among total losses:

$$N_{lossIr} = 0.15*N_{loss} = 0.15*1000 = 150 people$$

Sanitary losses among total losses:

$$N_{lossSan} = 0.85 * N_{loss} = 0.85 * 1000 = 850 people$$

1.3 Reference tables required for calculations

Table 1. 3 – Coefficients for calculating the parameters of the breakout wave

		Value	Value of Design Coefficients at Hydraulic Slope of Water Surface								urface		
$B_{ei\partial extit{ heta}}$	H_0 , M	i = 0,0001					i = 0.0005				i = 0,	001	
		A_{I}	B_1	A_2	B_2	A_{I}	B_{I}	A_2	B_2	A_{I}	B_{I}	A_2	B_2
	20	100	90	9	7	70	50	13	10	40	18	16	21
1	40	280	150	20	9	180	76	24	12	110	30	32	24
	80	720	286	39	12	480	140	52	16	300	60	62	29
	20	128	204	11	11	92	104	13	23	56	51	18	38
0,5	40	340	332	19	14	224	167	23	25	124	89	32	44
	80	844	588	34	17	544	293	43	31	320	166	61	52
0,25	20	140	192	8	21	60	200	4	33	40	38	15	43
	40	220	388	13	21	192	276	19	36	108	74	30	50
	80	880	780	23	21	560	320	41	41	316	146	61	65

Table 1. 4 – Time of arrival in hours of the crest (t_{2p}) and front $(t_{\phi p})$ of the breakthrough wave in a given target

<i>L</i> , <i>m</i>	$H_0 = 20 M$				$H_0=40{ m extit{M}}$				$H_0 = 80 M$			
	i = 0.001		=0.001 $i=0.0001$ $i=0.0001$		i =	=0,001 $i=0,$		i = 0.0001		0,001	i = 0.0001	
	$t_{\phi p}$	t_{ep}	$t_{\phi p}$	t_{zp}	$t_{\phi p}$	t_{ep}	$t_{\phi p}$	t_{ep}	$t_{\phi p}$	t_{ep}	$t_{\phi p}$	t_{ep}
5000	0,2	1,8	0,2	1,2	0,1	2,0	0,1	1,2	0,1	0,2	0,1	1,1
10000	0,6	4,0	0,6	2,4	0,3	3,0	0,3	2,0	0,1	0,4	0,2	1,7
20000	1,6	7,0	2,0	5,0	1,0	6,0	1,0	4,0	0,4	1,0	0,5	3,0
40000	5,0	14	4,0	10	3,0	10	2,0	7,0	1,0	2,0	1,2	5,0
80000	13	30	11	21	8,0	21	6,0	14	3,0	4,0	3,0	9,0

Table 1.5 – Time calculation coefficient when the territory is flooded by a breakthrough wave

A	Value at the height of the dam in proportions of the						
Θ	average depth of the riv	er in the downstream $oldsymbol{eta}$					
	k=10	k=20					
0,05	15,5	18,0					
0,1	14,0	16,0					
0,2	12,5	14,0					
0,4	11,0	12,0					
0,8	9,5	10,8					
1,6	8,3	9,9					
3,0	9,9	9,6					
5,0	7,6	9,3					

TOPIC 2

PREDICTIVE ASSESSMENT OF POLLUTION OF OPEN WATER SOURCES BY EMERGENCY CHEMICALLY HAZARDOUS SUBSTANCES (CHS) IN EMERGENCY SITUATIONS

2.1. Individual tasks

The goal is to master the practical skills of calculating the pollution of open water sources with chemically hazardous substances in emergency situations.

It is necessary to calculate the forecast estimates of river pollution in the event of an emergency discharge of CHS into them, namely:

- a) preparation of initial data;
- b) determination of the main characteristics of pollution:
- time of approach of the pollution zone with the maximum concentration of HCP to a given site;
 - maximum value of CHS concentration in the river pollution zone;
- duration of passage of high (extremely high) concentrations of HCP in a given section of the river.

At the location with the coordinates of $X_{c\kappa u\partial}$, $Y_{c\kappa u\partial}$, there was a spill to the chemically hazardous substances (CHS) river with a volume of W and a concentration of C_a and lasted for time t_o .

The information required for the calculations is given in Table 2.1. The abbreviations given in the table have the following abbreviations:

HCY – rivers in extremely favorable conditions;

CYT - rivers in favorable flow conditions;

BCY – rivers in relatively favorable conditions;

BUP – are rivers with relatively clean beds.

winter1 – the first 10 days after the freeze-up;

winter2 – 10th-20th day after freeze-up;

winter3 – 20th-60th day after freeze-up;

winter4 – 60th-80th day after freeze-up;

spring – is the 80th-110th day after the freeze-up.,

Table 2.1 - Initial data for calculations

Bap	Name	$X_{cкид}$	$Y_{c\kappa u\partial}$	Xcme	Y_{cme}	Н,	W,	to,	L,	C_a	T_{e}		River
	CHS					М	M^3	h	кт	mg/l	${}^{o}C$	Year	beds
1	Petrol	5040800	1264000	5043666	1260800	1,3	32	1,1	4,8	700		summer	НСУ
2	Petrol	5040800	1264000	5044000	1260333	1,3	92	0,8	5,7	700	2	Winter1	НСУ
3	Petrol	5040800	1264000	5044466	1259733	1,3	69	0,7	6,5	700	2	Winter2	СУТ
4	Petrol	5049600	1266000	5050800	1261200	1,3	77	1,4	6	700	2	Winter3	СУТ
5	Petrol	5049600	1266000	5050660	1260000	1,3	83	1,5	7,4	700	2	Winter4	ВСУ
6	Petrol	5049600	1266000	5050800	1258000	1,3	92	1,2	9,8	700	5	spring	ВЧР
7	Phenol	5040800	1264000	5043666	1260800	1,3	20	1,1	4,8	1030	20	summer	НСУ
8	Phenol	5040800	1264000	5044000	1260333	1,3	9	0,7	5,7	1030	2	Winter1	НСУ
9	Phenol	5040800	1264000	5044466	1259733	1,3	11	0,8	6,5	1030	2	Winter2	СУТ
10	Phenol	5049600	1266000	5050800	1261200	1,3	25	0,9	6	1030	2	Winter3	СУТ
11	Phenol	5049600	1266000	5050660	1260000	1,3	29	1	7,4	1030	2	Winter4	ВСУ
12	Phenol	5049600	1266000	5050800	1258000	1,3	30	0,6	9,8	1030	5	spring	ВЧР
13	Lead ions	5040800	1264000	5043666	1260800	1,3	40	1,1	4,8	400	20	summer	НСУ
14	Lead ions	5040800	1264000	5044000	1260333	1,3	56	1,2	5,7	400	2	Winter1	НСУ
15	Lead ions	5040800	1264000	5044466	1259733	1,3	200	1,3	6,5	400	2	Winter2	СУТ
16	Lead ions	5049600	1266000	5050800	1261200	1,3	50	1,4	6	400	2	Winter3	СУТ
17	Lead ions	5049600	1266000	5050660	1260000	1,3	60	1,5	7,4	400	2	Winter4	ВСУ
18	Lead ions	5049600	1266000	5050800	1258000	1,3	70	1,6	9,8	400	5	spring	ВЧР
19	Chlorobenzene	5040800	1264000	5043666	1260800	1,3	8	1,5	4,8	1110	20	summer	НСУ
20	Chlorobenzene	5040800	1264000	5044000	1260333	1,3	105	0,8	5,7	1110	2	Winter1	НСУ
21	Chlorobenzene	5040800	1264000	5044466	1259733	1,3	32	1,1	6,5	1110	2	Winter2	СУТ
22	Chlorobenzene	5049600	1266000	5050800	1261200	1,3	44	1,2	6	1110	2	Winter3	СУТ
23	Chlorobenzene	5049600	1266000	5050660	1260000	1,3	28	1,3	7,4	1110	2	Winter4	ВСУ
24	Chlorobenzene	5049600	1266000	5050800	1258000	1,3	39	0,9	9,8	1110	5	spring	ВЧР
25	Dichloroethane	5040800	1264000	5043666	1260800	1,3	7	1,2	4,8	1250	20	summer	НСУ
26	Dichloroethane	5040800	1264000	5044000	1260333	1,3	41	0,8	5,7	1250	2	Winter1	НСУ
27	Dichloroethane	5040800	1264000	5044466	1259733	1,3	22	1,1	6,5	1250	2	Winter2	СУТ
28	Dichloroethane	5049600	1266000	5050800	1261200	1,3	26	1,2	6	1250	2	Winter3	СУТ
29	Dichloroethane	5049600	1266000	5050660	1260000	1,3	18	1,3	7,4	1250	2	Winter4	ВСУ
30	Dichloroethane	5049600	1266000	5050800	1258000	1,3	15	1,2	9,8	1250	5	spring	ВЧР

2.2 Example of the task

To assess the situation during the destruction of the dam, it is necessary to prepare initial data, form a table of initial data and determine the main characteristics of pollution

2.2.1 Preparation of initial data.

We record the initial data given in Table 2.1, namely:

- 1. The coordinates of the CHS drop site are $X_{c\kappa u\partial} = 5049600$, $Y_{c\kappa u\partial} = 1266000$.
- 2. The coordinates of the water intake site are

$$X_{cme} = 5050800$$
, $Y_{cme} = 1258000$.

- 3. The name of CHS is gasoline.
- 4. Emergency Discharge Volume $W = 92 \text{ m}^3$.
- 5. Emergency reset time $t_0 = 1.2$ hours.
- 6. The concentration of CHS in the emergency discharge $C_a = 700 \text{ mg/l}$.
- 7. Water temperature $T_e = 5$ ${}^{0}C$.
- 8. The season is **spring**.
- 9. The characteristic of the riverbed is *rivers with relatively clean beds*.
- 10. The average depth of the river section H = 1.3 M.

We put preliminary information about the reset on the map (Fig. 2.1), namely:

- mark in accordance with the specified coordinates the place of CHS discharge and the place of water intake (with bold red dots);
- apply a conventional sign of the discharge site (in black, the side of the square of the conventional sign -1.5 cm) and make an explanatory inscription in the form of a fraction next to it in black (in the numerator the name of the CHS, in the denominator the volume of the emergency discharge W and the time of the emergency discharge t_0);
- apply the conventional sign of the water intake site (in black, the side of the square of the conventional sign -1.5 cm, the side of the equilateral triangle of the conventional sign -1.5 cm) and leave free space near it for explanatory inscription;
- the distance along the river between the marked points is boldly given in blue.

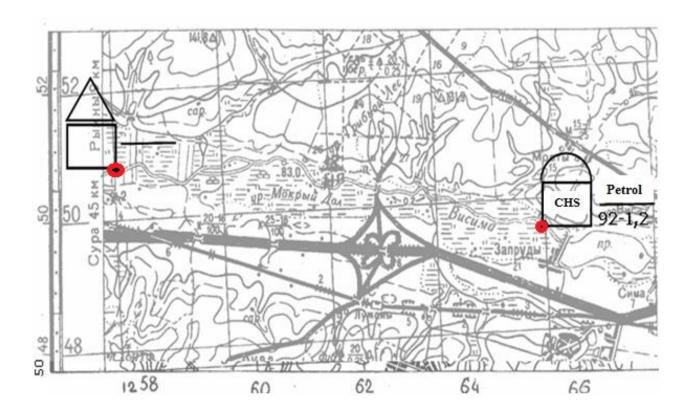


Figure. 2.1 Mapping Preliminary Pollution Information

Additionally, we determine:

- 11. The length of the section L = 9.8 km.
- 12. Average width of area B = 18 m.
- 13. The average velocity of the river flow in a given section is V = 0.2 m/s.
- 14. Coefficient of roughness for open channel n_{u} = 0,04 (Table 2.2);

Coefficient of roughness of the lower ice surface $n_n = 0.025$ (Table2.3);

15. Coefficient of longitudinal variance (reduced) (by interpolation):

$$D_n = 17,17 + (18,37-17,17)/(2-1) \cdot (1,3-1) = 17,53$$
 m (Table 2.5).

16. Self-purification coefficient of **CHS** K = 0.06 1/day (Table 2.6).

17.MPC_B **CHS** MPC =
$$0.1 \text{ mg/l}$$
 (Table 2.7).

- 18. The coefficient that takes into account the evaporation of **CHS** in the initial period of displacement with water is Y=1.
- 2.2.2 Determination of the main characteristics of pollution
- 1. We calculate the time of river water from the accident site to a given alignment:

$$t_{\partial} = 9.8 \text{ km/}(3.6 \cdot 0.2 \text{ m/s}) = 13.6 \text{ hours}.$$

2. We calculate the time of approach of the pollution zone with the maximum concentration of **CHS** to a given section of the river:

$$t_{max} = 13.6 \text{ hours} + 1.2 \text{ hours} / 2 = 14.2 \text{ hours}.$$

3. Determine the flow rate of CHS entering the river:

$$q = 92 \,\text{m}^3 \cdot 1/3600 \cdot 1,2 \text{ hours} = 0.031 \,\text{m}^3/\text{s}.$$

4. Determine the flow rate of water in the river above the place of discharge of CHS:

$$Q = 0.2 \text{ m/s} \cdot 18 \text{ m} \cdot 1.3 \text{ m} = 4.68 \text{ m}^3/\text{s}.$$

5. Determine the coefficient that takes into account the mixing of CHS in the mass of the water flow (Table 2.8):

$$j = 0.8$$

6. Determine the coefficient that takes into account the transverse dispersion of CHS in the river:

$$J = 0.031 \,\text{m}^3/\text{s} / (0.8 \cdot 4.68 \,\text{m}^3/\text{s} + 0.031 \,\text{m}^3/\text{s}) = 0.0081.$$

7. Determine the coefficient of longitudinal variance (actual):

$$D = 17,53 \text{ m} \cdot 0.2 \text{ m/s} = 3,51 \text{ m}^2/\text{s}.$$

8. Define the Z parameter:

$$Z = 3.51 \text{ m}^2/\text{s} \cdot (14.2 \text{ hours /6}) \cdot 0.2 \text{ m/s} \cdot 1.2 \text{ hours } = 1.99.$$

9. Determine the coefficient that takes into account the longitudinal dispersion of CHS in the river:

$$S = 1$$
 because Z<3.

10. Determine the coefficient that takes into account the non-conservatism of the NHR:

$$e = \exp(-(0.06 \text{ 1/day} \cdot 13.6 \text{ hours /24})) = 0.97.$$

11. Determine the approximate maximum concentration of **CHS** in a given section of the river:

$$C_{max} = 700 \text{ mg/l} \cdot 0.0081 \cdot 1.0.97 = 5.5 \text{ mg/l}.$$

12. Determine the values of high and extremely high concentrations of **CHS**:

$$C_{e\kappa} = 10.0, 1 \text{ mg/l} = 1 \text{ mg/l};$$
 $C_{ee\kappa} = 100.0, 1 \text{ mg/l} = 10 \text{ mg/l}.$

Since $C_{\text{BK}} < C_{\text{max}} < C_{\text{eBK}}$ (1,0 mg/l <5,5 mg/l < 10,0 mg/l, we use C_{BK} in the calculations.

13. Determine the duration of passage of high concentrations of **CHS** in a given section of the river:

$$T_{n\kappa} = t_o \ hours \cdot (1+Z) \cdot (1-1 \ mg/l \ / \ C_{max} \ mg/l) = 1, 2 \cdot (1+1,99) \cdot (1-1 \ /5,5) = 2,92 \ hours.$$

14. Determine the moment of passage of the front of the high pollution zone everywhere given area:

$$t_{\phi} = t_{max} hours - T_{n\kappa} hours /2 = 14,2 - 2,92 /2 = 12,74 hours.$$

15. Determine the moment of passage of the tail section of the high pollution zone everywhere given area:

$$t_x = t_{max} hours + T_{n\kappa} hours /2 = 14.2 + 2.92 /2 = 15.66 hours.$$

We put information about the characteristics of pollution on the map (Fig. 2.2), namely: near the conventional sign of the water intake in a fraction, we write: in the numerator: C_{max} and $T_{n\kappa}$, in the denominator: t_{ϕ} and t_{x} .

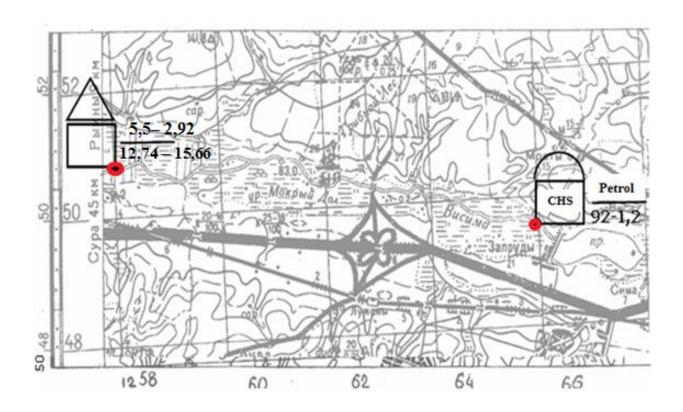


Figure. 2.2- Mapping information about pollution characteristics

2.3 Reference tables required for calculations

Table 2.2 - Roughness coefficients for open watercourse beds n_{uu}

Nature of the channel	n_u
Rivers in extremely favorable conditions	0,025
Rivers in favorable flow conditions	0,030
Rivers in relatively favorable conditions	0,035
Rivers with relatively clean channels	0,040

Table 2.3- Roughness coefficients for the lower ice surface n_n

Freeze-up period	$n_{\scriptscriptstyle R}$
The first 10 days after the freeze-up (the first and second decade of December)	0,150
10th - 20th day after freeze-up (last decade of December and beginning of January)	0,100
20th - 60th day after freeze-up (mid-January and first decade of February)	0,050
60th - 80th day after freeze-up (end of February - beginning of March)	0,040
80th - 110th day after freeze-up (March)	0,025

Table 2.4 - Coefficients of longitudinal variance D_n , m

Depth, N, m		Dn with roughness coefficient n_{uu}									
	0,025	0,030	0,035	0,040	0,050	0,067	0,080	0,100	0,133		
≤1,0	2,6	4,3	6,4	9,1	16,3	35,2	56,1	100,8	213,4		
2,0	3,6	5,6	8,2	11,2	18,9	37,2	59,8	101,0	215,2		
3,0	4,6	7,0	10,0	13,6	22,5	42,0	63,0	105,0	220,6		
4,0	5,5	8,4	12,0	16,2	26,8	50,9	74,3	118,3	225,9		

Table 2.5 - Coefficients of longitudinal dispersion D_n , m (for conditions of ice cover)

Depth		D_n at ro	ughness	coefficie	ent for b	ottom sur	face ice 1	i_{II}			
Н, т											
	0,010	0,015	0,025	0,030	0,040	0,050	0,100	0,150			
	$n_{uu} = 0.025$										
1,0	3,12	4,21	7,70	10,23	17,29	27,59	155,78	499,43			
2,0	3,91	5,15	8,92	11,54	18,49	28,02	126,33	336,66			
	$n_{uu} = 0.030$										
1,0	4,79	6,12	10,21	13,10	20,97	32,20	166,77	519,46			
2,0	5,79	7,24	11,51	14,41	21,96	32,12	133,90	347,81			
			n	u = 0.035							
1,0	7,00	8,59	13,34	16,62	25,38	37,65	179,26	542,04			
2,0	8,19	9,85	14,65	17,84	26,02	36,86	142,39	360,27			
	$n_{uu} = 0.040$										
1,0	9,84	11,71	17,17	20,88	30,61	43,99	193,29	567,13			
2,0	11,14	13,03	18,37	21,87	30,71	42,27	151,81	374,00			

Table 2.6 - Approximate values of self-purification coefficients of watercourse water from some CHS K, 1/day

CHG	K at water temperature						
CHS	>15 ⁰ S	10 -15 ⁰ S	$<10^{~0}$ S				
Ammonia	2,7	1,8	0,9				
Petrol	2,4	0,15	0,06				
Petroleum products	0,3	0,2	0,02				
Phenols	0,6	0,4	0,2				
Formaldehyde	3,0	2,1	0,6				

Table 2.7 - Maximum permissible concentrations of some CHSs in watercourses and reservoirs of drinking water use MPC_B , mg/l

CHS	MPC_B	CHS	MPC_B
Petrol	0,1	Mercury (in non-organic sp.)	0,0005
Benzene	0,5	Hydrogen sulfide	1,0
Hydrazine hydrate	0,01	Lead (in non-org. sp.)	0,03
Dichloroethane	0,02	Toluene	0,5
Kerosene Tech.	0,01	Phenol	0,001
Methanol	3,0	Formaldehyde	0,05
Oil	0,3	Furfural	1,0
Acetic acid	1,0	Chlorobenzene	0,02

Table 2.8 - Approximate values of *the* j coefficient for watercourses

emergency	om the place of discharge to the ignment, km		$m{j}$ at water flow $\mathit{rate}~m{Q}$), m ³ /s
		<10	10 - 100	>100
	Up to 20	0,8	0,5	0,2
21	30	1,0	0,7	0,3

Table 2.9 - Approximate values of the Y coefficients, which take into account the evaporation of some boiling CHSs in the initial period of their mixing with water

CHS	0 °S	Y value at water temperature 10^{0} S 10^{0} S 20^{0} S					
Ammonia	0,77	0,56	0,42				
Methylamine	0,10	0,09	0,08				
Hydrogen sulfide	0,25	0,20	0,15				
Formaldehyde	0,73	0,71	0,68				

TOPIC 3

DETERMINATION OF THE NECESSARY PERSONAL PROTECTIVE EQUIPMENT, DEGASSING SUBSTANCES AND THE NUMBER OF EMPLOYEES TO PERFORM EMERGENCY RESCUE OPERATIONS IN CONDITIONS OF NH INFECTION

3.1. Individual tasks

The goal is to master the skills of calculating the necessary personal protective equipment, degassing substances and the number of employees to perform emergency rescue operations (ERO) in the conditions of CHS infection

The work manager needs to organize ERO in the conditions of CHS contamination in three zones of the area – A, B, C.

To do this, perform the following tasks (task options are given in Table 3.1), namelyin the definition for each zone:

- personal protective equipment;
- degassing substance;
- percentage of decrease in labor productivity K_{3H} , %;
- specified labor costs $T_{ymoчh}$, person -hours;
- number of rescuers N_{psm} , people.

Table 3.1 – Task Options

		Zone A			Zone B			Zone C	
Var	CHS	T_A ,	t_A ,	CHS	$T_{\mathcal{B}}$,	$T_{\mathcal{B}}$,	CHS	T_{B} ,	T_{B} ,
v ai		person -	hours		person	hours		person	hours
		hours			-hours			-hours	
1	Cl_2	110	6	SO_2	87	5	HCN	221	4
2	NH_3	120	3	Cl_2	94	4	SO_2	215	5
3	CS_2	130	5	NH ₃	101	3	HCN	209	6
4	Cl_2	140	4	HCN	108	6	NH_3	203	3
5	NH_3	150	6	CS_2	115	5	SO_2	197	4
6	CS_2	160	3	SO_2	122	4	HCN	191	5
7	Cl_2	170	5	NH ₃	129	3	SO_2	185	6
8	NH_3	180	4	SO_2	136	6	HCN	179	3
9	CS_2	190	6	HCN	143	5	NH_3	173	4
10	Cl_2	200	3	CS_2	150	4	SO_2	167	5
11	NH_3	210	5	SO_2	157	3	HCN	161	6
12	CS_2	220	4	Cl_2	164	6	SO_2	155	3
13	Cl_2	230	6	NH_3	85	5	HCN	149	4
14	NH_3	240	3	HCN	89	4	NH_3	143	5
15	CS_2	250	5	Cl_2	93	3	SO_2	137	6
16	Cl_2	260	4	SO_2	97	6	HCN	131	3
17	NH ₃	270	6	Cl_2	101	5	SO_2	125	4
18	CS_2	96	3	NH_3	105	4	HCN	119	5
19	Cl_2	100	5	HCN	109	3	NH_3	113	6
20	NH ₃	104	4	CS_2	113	6	SO_2	156	3
21	CS_2	108	6	NH ₃	117	5	HCN	153	4
22	Cl_2	112	3	HCN	121	4	SO_2	150	5
23	NH ₃	116	5	CS_2	125	3	HCN	147	6
24	CS_2	120	4	SO_2	129	6	NH ₃	144	3
25	Cl_2	124	6	NH ₃	133	5	SO_2	141	4
26	NH ₃	128	3	Cl_2	137	4	HCN	138	5
27	CS_2	132	5	HCN	141	3	SO_2	135	6
28	Cl ₂	136	4	CS_2	145	6	HCN	132	3
29	NH_3	140	6	SO_2	149	5	HCN	129	4
30	CS_2	144	3	Cl ₂	153	4	SO_2	126	5

Note: Cl_2 – chlorine ; NH_3 - ammonia; CS_2 - carbon disulfide; SO_2 – sulphurous anhydrite; HCN – hydrocyanic acid.

3.2 Example of the task

To complete the task, it is necessary to form a table of the initial data of the object (Table 3.2).

Table 3.2 – Imprint

P	arameter name, designation, and dimension	Value
	The name of the NHR with which the area is contaminated	Chlorine
Zone A	Labor costs for the implementation of $ERO\ T_A$, person -hours	110
	Duration of change t_A , hours	6
	The name of the NHR with which the area is contaminated	Ammonia
Zone B	Labor costs for the implementation of $ERO\ T_B$ person -hours	100
	Duration of change t_B , hours	5
	The name of the NHR with which the area is	Carbon
Zone C	contaminated	disulfide
	Labor costs for the implementation of $ERO\ T_C$, person -hours	130
	Duration of change t_C , hours	4

Calculation

1. Determine for zone A:

1.1 Required personal protective equipment (PPE) according to Table 3.3:

civilian gas masks CP-5, 7, or industrial gas masks with boxes V, G, KD, BKF, M, SO

1.2 Degassing substance according to Table 3.4: Slaked Lime.

1.3 Percentage of decrease in labor productivity $K_{3H(A)}$, % according to Table 3.5.

$$K_{3H(A)}$$
, = 30%.

1.4 Specified Labor Costs:

$$T_{ymouh(A)} = T_A + T_A \cdot K_{3h(A)}/100 = 110 + 110 \cdot 30 /100 = 143 person$$
 -hours

1.5 Number of rescuers:

$$N_{pяm(A)} = T_{ymoчh(A)}/t_A = 143/6 \approx 24 people.$$

2. Determine for zone B:

- 2.1 Required personal protective equipment (PPE) according to Table 3.3: DP-2 with FPC gas masks CP-5, 7, or industrial gas masks with boxes TS, KD, M, SO.
 - 2.2 Degassing substance according to Table 3.4: Water.
- 2.3 Percentage of decrease in labor productivity $K_{3H(B)}$, % according to Table 3.5:

$$K_{3H(B)} = 25\%$$
.

2.4 Specified Labor Costs:

$$T_{VMOVH(B)} = T_B + T_B \cdot K_{3H(B)}/100 = 100 + 100 \cdot 25/100 = 125$$
 person-people

2.5 Number of rescuers:

$$N_{psm(B)} = T_{ymouh(B)}/t_B = 125/5 = 25 = 125 people.$$

3. Determine for zone C:

- 3.1 Required personal protective equipment (PPE) according to Table 3.3: civilian gas masks CP-5.7, or industrial gas masks with boxes V, G, KD, BKF, M, SO.
 - 3.2 Degassing substance according to Table 3.4:

Sodium sulfide or Potassium.

3.3 Percentage of decrease in labor productivity $K_{3H(C)}$, % according to Table 3.5:

$$K_{3H(C)}=20\%$$
.

3.4 Specified Labor Costs:

$$T_{ymovh(C)} = T_C + T_C \cdot K_{3h(C)}/100 = 130 + 130 \cdot 20/100 = 156$$
 person-people

3.5 Number of rescuers:

$$N_{pяm(C)} = T_{ymoчH(C)}/t_C = 156/4 hours = 39 people.$$

3.3 Reference tables required for calculations

Table 3.3 – Brands of gas masks

CHS	Brands of gas masks
Ammonia	TS, KD, M, SO, DP-2 with FPC gas masks CP-5, 7
Hydrocyanic acid	A, V, G, E, CD, BKF, M, SO, CP-5, 7
Carbon disulfide	V, G, CD, BKF, M, SO, CP-5, 7
Chlorine	V, G, CD, BKF, M, SO, CP-5, 7
Sulfur dioxide	V, BKF, CP-5, 7

Table 3.4 – Degassing substances

CHS	Degassing solutions
Ammonia	Water
Hydrocyanic acid	Alkalis, ammonia water
Carbon disulfide	Sodium sulfide or potassium
Chlorine	Slaked lime
Sulfur dioxide	Slaked lime, ammonia water.

Table 3.5 – Decrease in labor productivity, % in protective equipment

Shift duration,	Decrease in labor product	tivity, % in protective equipment
hours	Gas mask	Gas mask and Protective suit
1	5	10
2	10	20
3	15	30
4	20	40
5	25	45
6	30	50

TOPIC 4

METHODOLOGY FOR CALCULATING THE REQUIRED NUMBER OF VEHICLES AND WATERCRAFT FOR EVACUATION OF THE POPULATION FROM THE FLOOD ZONE

4.1. Individual tasks

Goal: to master the skills of calculating the required number of vehicles and watercraft for the evacuation of the population from the flood zone

According to the scenario, there was an accident at a hydraulic structure. As a result of damage to the dam, the area inhabited by civilians was flooded.

It is necessary to calculate the required number of vehicles and watercraft for the evacuation of the population from the flood zone in accordance with the provisions of this Convention.

Table 4. 1 The following abbreviations are adopted:

 $\Pi 3$ – watercraft:

T3 – vehicle;

d – equipped with an engine;

V – on oars.

Attention! When performing calculations, all final values must be rounded to the highest integer.

Table 4. 1 – Task Options

					Op	tions				
	1	2	3	4	5	6	7	8	9	10
Parametrs	11	12	13	14	15	16	17	18	19	20
	21	22	23	24	25	26	27	28	29	30
$T_{\it \Pi\Pi P}^{\it ep}, \ \it hours$	18	19	20	21	22	23	24	18	19	20
ПЗ №1	PTS-2	DL-10-d	NL-5-d	NL-8-d	PTS-2	DL-10-v	NL-5-v	NL-8-v	PTS-2	DL-10-d
ПЗ №2	DL-10-d	NL-5-d	NL-8-d	PTS-2	DL-10-v	NL-5-v	NL-8-v	PTS-2	DL-10-d	NL-5-d
<i>R</i> _П 3, м	500	300	350	400	280	500	350	350	400	280
T _{ПЗ} евак, min.	100	110	120	130	140	150	160	180	100	110
T _{T3} ^{eвак} , min.	120	130	140	150	160	180	100	110	100	110
k_{II3}	1,1	1,15	1,2	1,25	1,1	1,15	1,2	1,25	1,1	1,15
$N_{\Pi 31}{}^{hac},$ people	500	250	100	90	220	230	110	95	210	115
N _{П31} ^{нас} , people	250	100	90	220	230	110	95	210	260	115
T3 №1	Ruta 23	Ruta 18	"Etalon"	Bogdan – A091	Bogdan – A301	Bogdan – A069	"Etalon"	Bogdan – A091	Ruta 23	Ruta 18
T3 №2	Etalon"	Ruta 23	Bogdan – A091	Etalon"	Bogdan – A069	Bogdan – A301	Ruta 18	"Etalon"	Bogdan – A091	Bogdan – A069
N _{T31} ^{нас} , people	180	190	200	210	220	180	190	200	210	220
N _{T32} ^{нас} , people	250	240	230	220	225	250	240	230	220	225
T _{T31} peŭc, hours	2	2,5	3	3,5	2	2,5	3	3,5	3	3,5
T _{T32} peŭc, hours	2,2	3	3,5	2	2	3,5	2,5	2,5	3	2,2

4.2 Example of the task.

4.2.1 Data preparation

To prepare for the calculations, we form a table of output data (Table 4.2) according to its variant (Table 4.1). For example, the information already included in the table is the same for all variants.

Table 4. 2 – Table Form to Record Output Data

Parameter name, designation, and dimension	Value
Name of watercraft No. 1	PTS-2
Name of watercraft No. 2	DL-10-v
Length of the evacuation route by watercraft $R_{\Pi 3}$, m	280
Water flow velocity $V_{BII} = 1 \text{ m/s}$	1
Duration of evacuation by watercraft $T_{IJ3}^{eeaa\kappa}$, min	140
Watercraft utilization rate k_{II3}	1.1
Population for evacuation by the 1st type of watercraft $N_{\Pi 31}^{\ \ \mu ac}$, people	220
Population for evacuation by the 2nd type of watercraft $N_{\Pi 32}^{hac}$, 40π , people	230
Vehicle Name No. 1	Bogdan – A091
Vehicle Name No.2	Etalon"
Population for evacuation by the 1st type of vehicle $N_{T31}^{\ \ \mu ac}$, people	180
Population for evacuation by the 2nd type of vehicle $N_{T32}^{\mu ac}$, people	250
Duration of evacuation by vehicles T_{T3}^{ebak} , min.	160
Duration of the trip of the 1st type of vehicle T_{T31} peuc, hours	2.5
Duration of the trip of the 2nd type of vehicle T_{T32} peuc, hours	3.5
Time of day coefficient $\mathbf{k}_{\mathbf{q}_{\mathbf{q}}}$	1.5
Coefficient of underwater conditions $\mathbf{k}_{\mathbf{n}\mathbf{y}}$	1.25

The following abbreviations are adopted:

 $\Pi 3$ – watercraft; T3 – vehicle; d – equipped with an engine; V – on oars.

4.2.2 Settlement procedure.

1. For the 1st type of watercraft according to Table 4.3 determine:

Table 4. 3 – Characteristics of watercraft of rescue formations

No	Name of characteristics	Boats			
Salary		PTS-2	DL-10	NL-5	NL-8
1.	Capacity, people	75	25	5	8
2.	Speed, m/min.:	283			
	with outboard engine	-	200	133	116
	Paddleboarding:		83	67	50
3.	Time required for loading and	30	22	13	16
	unloading, minutes				

1.1 Watercraft velocity V_{II31} , $m^{.min-1}$.

$$V_{II31} = 283 \text{ m/min}$$

- 1.2 Time for loading (unloading) the watercraft $t_{\Pi 31}$, min. $t_{\Pi 31} = 30$ min
- 1.3 Watercraft capacity $M_{\Pi 31}$, · people.

$$M_{\Pi 31} = 75 people$$

2. Determine the duration of the voyage of the 1st watercraft:

$$T_{\Pi 31}^{
m peйc} = rac{2*R_{\Pi 3}}{V_{\Pi 31}}(1+0.3*V_{
m B\Pi}) + t_{\Pi 31} =$$

$$=\frac{2*280}{283}(1+0.3*1)+30=32.57 min$$

3. Determine the number of watercraft of the 1st type for evacuation of the population from the flood zone:

$$N_{\Pi 31} = rac{N_{\Pi 31}^{
m Hac} * T_{\Pi 31}^{
m peŭc}}{M_{\Pi 31} * T_{\Pi 3}^{
m eBak}} * k_{\Pi 3} * k_{
m 4Д} * k_{
m \Pi y} =$$

$$= \frac{220 * 32,57}{75 * 140} * 1,1 * 1,5 * 1,25 = 1,4$$

thus we accept a number of vehicles = 2 units

4. For the 2nd type of watercraft according to Table 4.3 determine:

Table 4. 3 – Characteristics of watercraft of rescue formations

№	Name of characteristics	Boats			
Salary		PTS-2	DL-10	NL-5	NL-8
1.	Capacity, people	75	25	5	8
2.	Speed, m/min.: with outboard engine Paddleboarding:	283	200 83	133 67	116 50
3.	Time required for loading and unloading, minutes	30	22	13	16

4.1 Watercraft velocity V_{II32} , $m^{.min-1}$.

 $V_{II32} = 200 \text{ m/min}$

- 4.2 Time for loading (unloading) the watercraft $t_{\Pi 31}$, min. $t_{\Pi 32} = 22$ min
- 4.3 Watercraft capacity $M_{\Pi 32}$, · people.

 $M_{\Pi 32} = 25 people$

5. Determine the duration of the voyage of the 2nd watercraft:

$$T_{\Pi 32}^{
m peйc} = rac{2*R_{\Pi 3}}{V_{\Pi 32}}(1+0.3*V_{
m B\Pi}) + t_{\Pi 32} =$$

$$= \frac{2 * 280}{200} (1 + 0.3 * 1) + 22 = 25.64 \, min$$

6. Determine the number of watercraft of the 2nd type for evacuation of the population from the flood zone:

$$\begin{split} N_{\Pi 32} &= \frac{N_{\Pi 32}^{\text{\tiny Hac}} * T_{\Pi 32}^{\text{\tiny peŭc}}}{M_{\Pi 32} * T_{\Pi 3}^{\text{\tiny geak}}} * k_{\Pi 3} * k_{\text{\tiny ЧД}} * k_{\text{\tiny \Pi} y} = \\ &= \frac{220 * 25,64}{25 * 140} * 1,1 * 1,5 * 1,25 = 3,32 \end{split}$$

thus we accept a number of vehicles = 4 units

7. Determine the total number of watercraft for evacuation of the population from the flood zone:

$$N_{\Pi 3} = N_{\Pi 31} + N_{\Pi 32} = 2 + 4 = 6$$
 units

8. For the 1st type of vehicle according to Table 4.4 determine its m capacity M_{T31} , people.

Table 4.4 – Vehicle Characteristics

	Tuble 1.1 Venicle Characteristics					
№ Salary	Vehicle	Capacity, people				
1.	Ruta 23	23				
2.	Ruta 18	18				
3.	BAZ – A091 "Etalon"	26				
4.	Bogdan – A091	45				
5.	Bogdan – A301	41				
6.	Bogdan – A069	19				

$$M_{T31} = 45$$
 people

9. Determine the required number of vehicles of the 1st type for the transportation of the affected population from the flood line to the areas of settlement:

$$N_{\text{T31}} = \frac{N_{\text{T31}}^{\text{Hac}} * T_{\text{T31}}^{\text{peйc}}}{M_{\text{T31}} * T_{\text{T3}}^{\text{eBak}}} * k_{\text{П3}} * k_{\text{чд}} * k_{\text{пу}} =$$

$$= \frac{180 * 2.5 * 60 \ min}{45 * 160} * 1.1 * 1.5 * 1.25 = 7.73$$

thus we accept a number of vehicles = 8 units

10. For the 2nd type of vehicle according to Table 4.4 determine its m capacity M_{T32} , people.

Table 4. 4 – Vehicle Characteristics

№ Salary	Vehicle	Capacity, people
1.	Ruta 23	23
2.	Ruta 18	18
3.	BAZ – A091 "Etalon"	26
4.	Bogdan – A091	45
5.	Bogdan – A301	41
6.	Bogdan – A069	19

$$M_{T32} = 25 people$$

11. Determine the required number of vehicles of the 2nd type for transportation of the affected population from the flood line to the areas of settlement:

$$N_{\text{T32}} = \frac{N_{\text{T32}}^{\text{нас}} * T_{\text{T32}}^{\text{рейс}}}{M_{\text{T32}} * T_{\text{T3}}^{\text{евак}}} * k_{\text{П3}} * k_{\text{чд}} * k_{\text{пу}} =$$

$$= \frac{250 * 3.5 * 60 \ min}{45 * 160} * 1.1 * 1.5 * 1.25 = 15.0$$

thus we accept a number of vehicles = 15 units

12. Determine the total number of vehicles for transportation of the affected population from the flood line to the areas of settlement:

$$N_{T3} = N_{T31} + N_{T32} = 8 + 15 = 23$$
 units

4.3 Reference tables required for calculations

Table 4. 3 – Characteristics of watercraft of rescue formations

№	Name of characteristics	Boats			
Salary		PTS-2	DL-10	NL-5	NL-8
1.	Capacity, people	75	25	5	8
2.	Speed, m/min.:	283			
	with outboard engine	-	200	133	116
	Paddleboarding:		83	67	50
3.	Time required for	30	22	13	16
	loading and				
	unloading, minutes				

Table 4. 4 – Vehicle Characteristics

№ Salary	Vehicle	Capacity, people
1.	Ruta 23	23
2.	Ruta 18	18
3.	BAZ – A091 "Etalon"	26
4.	Bogdan – A091	45
5.	Bogdan – A301	41
6.	Bogdan – A069	19

SOURCES

1. Безпека в надзвичайних ситуаціях [Текст]: навч. посібник для студентів закл. вищ. освіти: у 2 ч. Ч. 1. Надзвичайні ситуації / М. Л. Лисиченко В. В. Вамболь, С. О. Вамболь, М. М. Кірієнко, І. А. Черепньов, В. М. Власовець ; за ред. М. Л. Лисиченка ; Харків. нац. техн. ун-т сіл. госп-ва ім. П. Василенка. - Харків: ПромАрт, 2021. - 202 с. - Бібліогр. наприкінці розд. - ISBN 978-617-7634-97-2

http://repository.kpi.kharkov.ua/handle/KhPI-Press/61871

2. Безпека в надзвичайних ситуаціях [Текст]: навч. посібник для студентів закл. вищ. освіти: у 2 ч. Ч. 2. Захист населення і територій / М. Л. Лисиченко В. В. Вамболь, С. О. Вамболь, М. М. Кірієнко, І. А. Черепньов, В. В. Бредіхін; за ред. М. Л. Лисиченка ; Харків. нац. техн. ун-т сіл. госп-ва ім. П. Василенка. - Харків: ПромАрт, 2021. - 200 с. - Бібліогр. наприкінці розд. - ISBN 978-617-7634-97-2

http://repository.kpi.kharkov.ua/handle/KhPI-Press/61872

3. Цивільний захист: метод. вказівки до самост. вивчення дисципліни для здобувачів першого (бакалаврського) рівня вищої освіти ден. та заоч. форми навчання спец. 133 «Галузеве машинобудування», 205 «Лісове господарство», 206 «Садово-паркове господарство» та 201 «Агрономія»; авт.-уклад.: Р. В. Антощенков, С. О. Вамболь, Н. П. Кунденко, С. О. Ляшенко, І. А. Черепньов: ДБТУ. Харків : [б. в.], 2023. 91 с.

https://repo.btu.kharkov.ua//handle/123456789/31582

4. Безпека в надзвичайних ситуаціях: метод. вказівки до проведення практ. занять за темою «Оцінка обстановки у разі аварії на водних об'єктах» для здобувачів першого (бакалаврського) рівня вищої освіти денної та заоч. форм навч. спец.133 «Галузеве машинобудування», 141 «Електроенергетика, електротехніка та електромеханіка»; авт.-уклад.: Р. В. Антощенков, С. О.

Вамболь, Н. П. Кунденко, С. О. Ляшенко, І. А. Черепньов : ДБТУ. Харків : [б. в.], 2023. 91 с.

https://repo.btu.kharkov.ua//handle/123456789/31608

5. Безпека в надзвичайних ситуаціях: метод. вказівки до проведення практ. занять за темою «Оцінка обстановки у разі руйнування будівель і споруд»: для здобувачів першого (бакалаврського) рівня вищої освіти денної та заоч. форм навч. спец. 133 «Галузеве машинобудування», 141 «Електроенергетика, електротехніка та електромеханіка»; авт.-уклад.: Р. В. Антощенков, С. О. Вамболь, Н. П. Кунденко, С. О. Ляшенко, І. А. Черепньов: ДБТУ. Харків : [б. в.], 2023. 87 с.

https://repo.btu.kharkov.ua//handle/123456789/31579

For notes

Educational Edition

Methodical instructions for independent work
«Assessment of the situation in the event of an accident on water objects. Part 1»
in the discipline «Technogenic and Environmental Safety in the Conditions of
Industrial and Economic Activity» for applicants for the second (master's) level
of higher education all forms of education

Authors:

VAMBOL Sergij Oleksandrovich MEZENTSEVA Iryna Oleksandrivna ILINSKA Ilha Ihorivna YEVTUSHENKO Nataliia Sergiivna

Responsible for graduation prof. Vambol S.O.

The work for the publication was recommended by prof *Raiko V.F.*

In the author's edition

Plan 2024 year, pos. 19.

ormat 60x84/16 Typeface TimeNewRoman
Digital printing paper. Risographic printing.
mind. printing. Arc. 2,0
Mintage 100 pr.
National Technical University «Kharkiv Polytechnic Institute»
61000, Kharkov, str. Kirpichova, 2.