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Abstract
Over recent years, a lot o f progress has been achieved in understanding o f the relationship between 
localization and transport o f energy in essentially nonlinear oscillatory systems. In this paper we are going to 
demonstrate that the structure o f the resonance manifold can be conveniently described in terms o f canonical 
action-angle variables. Such formalism has important theoretical advantages: all resonance manifolds may be 
described at the same level o f complexity, appearance o f additional conservation laws on these manifolds is 
easily proven both in autonomous and non-autonomous settings. The harmonic balance - based 
complexification approach, used in many previous studies on the subject, is shown to be a particular case of 
the canonical formalism. Moreover, application o f the canonic averaging allows treatment o f much broader 
variety o f dynamical models. As an example, energy exchanges in systems o f coupled trigonometrical and 
vibro-impact oscillators are considered.
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Introduction

Canonical action -  angle (AA) variables are famous and widely used instrument in a theory of 
dynamical systems [1 - 4]. The AA variables were instrumental in formulation of many prominent 
results and theories. Among others, one can mention theory of adiabatic invariants [1], formulation 
and proof of KAM theorem [3, 5, 6], development of canonical perturbation theory [5, 6], 
explorations on Hamiltonian chaos [7, 8], autoresonance phenomena [9, 10] etc.

The issue of energy exchange and transport in oscillatory systems recently attracted a lot of 
attention. Among various physical problems, considered in this context, one finds targeted energy 
transfer in essentially nonlinear systems [11-14], wave propagation and energy transport in granular 
media [15, 16], discrete breathers in strongly nonlinear systems, as well as vibration absorption and 
mitigation provided by nonlinear energy sinks [17, 18]. Major progress in all these fields has been 
achieved, since it was realized that the most efficient energy transport in the oscillatory systems 
usually occurs in conditions of resonance. This observation allows one to treat the system in the 
vicinity of the resonance manifold, and to restrict the consideration by averaged equations of motion 
(usually referred to as slow-flow equations). This crucial simplification often allows reduction of 
dimensionality and gives rise to conservation laws absent in the complete system beyond the 
resonance manifold. Technically, in vast majority of the mentioned works, the averaging has been 
performed with the help of complex variables (complexification-averaging approach, CxA) [19 - 21]. 
This approach follows back to models with self-trapping [22] and rotating-wave approximation [23] 
in the lattice dynamics. From mathematical point of view, this approach is completely equivalent to 
classical harmonic balance with slowly varying amplitudes [24]. However, the formalism of CxA 
allows convenient handling of the slow-flow equations. Advantages of this method were demonstrated 
in recent works devoted to energy exchange in model oscillatory systems [25, 26].

The goal of the current work is to present the formalism based on the canonical AA variables 
that allows efficient treatment of the energy transfer problems. Moreover, we are going to 
demonstrate that the CxA formalism is a particular case of this canonical AA formalism. Strictly
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speaking, the complex variables used in CxA naturally arise from transition to the AA variables of the 
linear oscillator. Exploration of the dynamics on the resonance manifold in terms of the AA variables 
easily reveals all regularities mentioned above (reduction of the state space, additional conservation 
laws). Besides, in terms of the AA variables one can study the energy transport in systems not 
amenable for the CxA (or harmonic balance) treatment, such as vibro-impact oscillatory systems.

1. Description of the basic model

In order to present the approach, we first consider the simplest possible nontrivial settings for 
the energy exchange in oscillatory systems: conservative system with two degrees of freedom and a 
single conservative nonlinear oscillator with external forcing.

Let us consider the conservative system of two coupled oscillators. Generally speaking, the 
Hamiltonian of this system is expressed as:

H  = H  (p ^  P2, «2) (1)

Here qk,k  = 1,2 are generalized coordinates, and p k,k  = 1,2 are conjugate momenta. It is 
supposed that at given energy level System (1) occupies a finite hypersurface fragment in the state 
space.

We’ll say that the canonical transformations to action-angle variables are induced by single -  
DOF Hamiltonians H 0( p , q) with sets of periodic solutions parametrized through their energy levels 
H 0(p ,q ) = E  = const [1, 4]. Then, the action-angle variables are defined by the well-known formulas
[4]:

I(E ) = 2 - (j) p (q,E )dq; 9=^  J  p (q„ I)dq  (2)

By inverting expressions (2), one can get explicit formulas for the canonical change of 
variables p(1 ,9 ),q (I ,9 ) . Each particular Hamiltonian H 0(p ,q ) generically induces canonical 
transformation of this type. For each conjugate pair of variables in Hamiltonian (1) we use one of 
such transformations:

pk = pk (Ik, 9k X qk = qk (Ik, 9k X
k  = 1,2; Ik e [0 ,<»), 9k e [0 ,2 —) ( )

It is not required that the transformations for different k  will be induced by the same 
Hamiltonian and will have the same functional form. As a result of the transformation, the system will 
be described by the following Hamiltonian in terms of the action -  angle variables:

H  = H  ( /1, / 2,9 ,9 2) (4)

Due to a 2— -periodicity of the angle variables, it is possible to expand the Hamiltonian into 
Fourier series [7]:

H  (A, I , , 9 9 )  = Z Vm,n (I1,12)exp(i(m91 -  n91)),Vmn = (5)
m,n

Averaging procedures in Hamiltonians similar to (4) are always based on existence of slowly 
varying combination of the angle variables. Commonly, this slow phase exists due to the fact that the 
actions do not deflect much from their average values [7]. It will be demonstrated below that the slow 
phase may appear also due to other reasons. At this stage, we proceed formally and suppose that the 
phase variables combine into a single slow phased = m091 - n092,m0,n0 e Z . Averaging the 
Hamiltonian over the fast phases, one just removes from (5) all terms not proportional to the slow
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phase, substitutes the actions by their average values and then obtains a slow-flow Hamiltonian in the 
following form:

O. V. Gendelman, T. Sapsis

H 0J1, J 2 , $ ) — Z  Vm0p,n0P ̂  J 2) exp(ip(m0Q -  nA ) )  —Z  Vm0p,n0P ̂  J 2) ex9 (iP$) 
p p  

J k — ( 4 ) ,  k  —1,2
(6)

Formally, the summation in (6) should extend over all integers. In practically interesting 
cases, due to fast decrease of the Fourier coefficients, it might be sufficient to consider only small 
values of p. We take some freedom in calling expression (6) “Hamiltonian”, since the slow variables 
do not form the canonically conjugate pairs. Precisely speaking, the function introduced in (6) is an 
integral of motion for the slow variables, rather than the Hamiltonian. Evolution equations for these 
variables will take the following form:

d H \ dH
----- ) — -m 0------,
dQ d 3 '

• dH dH $ — mn-------n

j  —
dH

'd Q
dH 

' d$
(7)

dJ,

n

It is obvious that System (7) possesses an additional integral of motion, besides the averaged 
Hamiltonian (6). Let us adopt that m0, n0 are positive. Then, this additional integral may be written as 
follows:

n0 J 1 + m0 J 2 — N 2 — const (8)

Eq. (8) gives rise to the trigonometric change of variables:

r N 2 sin2 y / 2 r N 2 cos2 y / 2 (9)
J i — ,J  2 — (9)

Substituting (9) into (6), one obtains:

h(y ,$) — H ( N  sin ( y / 2 ) , N  cos ( y / 2 ) ,$ )  — const, S e [ 0 ,2 j ) ,  y e [ 0, i ]  (10)

n m0

n m0

The conservation law (10) guarantees that the dynamical system on the sphere ( y is the polar

angle and $  the azimuth angle) is completely integrable. It is important that this system is revealed 
explicitly without writing down the equations of motion. Dynamics of this system are described by 
the following simple symmetric equations:

. 2m0n0 dh • 2m0n0 dh
y — — -̂------------; $  — — -̂------------

N  sin y d $  N  sin y dy  (11)

It is self-evident that the function h(y,$) is the first integral for System (11), but the slow angle 
variables (y ,$) do not form the canonically conjugate pair.

Let us consider now the conservative single-DOF oscillator without damping under periodic 
forcing with certain fixed frequency m. We also suppose that this forced system is Hamiltonian; for 
the most popular cases of external and parametric forcing it is easy to demonstrate that it is the case. 
O f course, this Hamiltonian will be time-dependent and the system will not be conservative. After the 
canonical transformation to the AA variables similar to (3) this Hamiltonian will take the following 
general form:
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H  = H(1 ,6 ,t); H(t ) = H(t  + T ),T = 2k  / m (12)

Due to the supposed periodicity of the forcing the Hamiltonian can be expanded into the 
Fourier series:

H  (1,6 , t ) = Y V  (I  )exp(i(m6 -  nmt )),V = V * (13)v ? ? / m,n v v m,n -m,-n  ̂ s
m,n

Similarly to the treatment presented in the previous Section, we suggest that there exists the 
slow phase variable3 = m06 - n0mt,m0,n0 e  Z . Averaging over the fast variable and substituting the 
averaged actions yields:

H  (J  ,3 )  = X  Vm0 p,n0 p (J  ) exp(ip(m06  -  n0mt)) (14)
peZ

The slow evolution of the action variable is described by the following equation:

8H \  dH
----- = -m 0------- (15)

8 6 /  83

The Hamiltonian (12) is time-dependent and therefore the following relationships are valid 

[1, 2]: _  _  _

dH 8H  dH 8H  8H  „ ^
---- = ----- ^ ----- = ----- = -n„ m-----  . (16)
dt 8t dt 8t 83

Combining (15) and (16), we obtain the following integral of motion in terms of the AA 
variables:

m0H  ( J  ,3 ) -  n0mJ = const. (17)

Note that the averaged Hamiltonian itself does not yield the integral of motion for the averaged 
system.

2. Relationship to complexification -  averaging approach.

The formalism of the complexification-averaging approach may be briefly summarized as 
follows [19, 21]: a general system of equations that describes dynamics of a set of coupled (and, 
generically, forced and damped) oscillators with N  degrees of freedom can be cast in the form

uk = Ft («!,..., Un , u ,..., un , t) (18)

Complex variables are introduced as follows:

Wk = uk + iQuk (19)

The frequency Q is selected with the help of various physical reasons. For instance, in 
quasilinear systems it is taken to be equal to the linear frequency, and in the forced systems it is 
usually equal to the forcing frequency. Sometimes it is left unknown (or even considered time- 
varying, see, e.g. [27]) and then it is computed in the course of the treatment. From Equation (19) 
(with constant Q, for simplicity) one can derive:

uk = W - v k ); uk = 1  {wk- v k ); uk =Wk- 2 {wk + v k ) (20)

Substituting (20) into (18), one obtains:
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Vk = Gk (V1,V*..,Vn v N  , t) (21)

This equation is formally equivalent to (18). However, if it is possible to justify the fast-slow 
decomposition in a form y k = v k exp(iQ t), where v k is a slow function of time, then one can 
substitute this expression to (21) and average the fast variable out. As a result, one obtains the 
simplified slow-flow equations

Vk = Qk (<P1,V1...,Vn wN ) (22)

As an example, we can consider a system of coupled Duffing oscillators described by the 
following equations of motion:

ilk = —uk — uk — s  (uk — ^3_k), k = 1,2

Change of variables (19) with Q = 1 and subsequent averaging yields:

Vk = 3 \Vk\2 Vk + S  Wk —V3—k X k = 1,2 (23)

System (23) possesses an additional integral of motion | v |2 + |v2|2 = P 2 = const. Further change 

of variables q>1 = P sin(y/2)exp(i51),v2 = P cos(y/2)exp(i52) leads to the following system of 
equations:

2 8h  - 3 2 2 8h
y = — ss in y  = ---- z---------- 3 = — P  cosy — s c o ty c o s i  = —z-------------- 1

P 2 siny 83  8 P 2siny dy
(24)

h  = — ( ~ P 4 sin2 y + S P 2sinycos3^j, 3 = S1 — S2

A detailed analysis of a system equivalent to (24) is presented elsewhere [20]. For our purposes 
it is enough to note that this system is a particular case of System (11) for m0 = n0 = 1.

This fact has simple explanation. A linear oscillator with Hamiltonian H  = p 1 / 2 + Q 2q 2 / 2 
induces the following well-known transformation to the action -  angle variables [1]:

r = . —  sin6 , p = V2I Q cosd . 
\  Q

(25)

By identifying q = uk, p  = uk and combining (19) and (25), one obtains:

Vk = uk + iQuk = V 2 IQ cos 6 + iV 2IQ  sin 0 = 4210. exp(i6 ) (26)

A comparison of (26) with the transformation to complex variables mentioned above

( sin(y / 2)exp(i5,) ^
V  2 = V  2 exp(iQt) = P I I exp(iQt) (27)

u  u  |  cos(y / 2)exp(i52))

reveals a similarity between the CxA and general relationships (7-8). More precisely, in the 
case of 1:1 resonance one obtains explicit relationships between the AA and the CxA variables:

J  = P -  
1,2 2

^sin2(y / 2 ) 

cos2(y / 2 )
0 ,2 = Sia + Q t (28)
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These relationships clearly demonstrate that the CxA approach is in fact a particular case of the 
transformation to action-angle variables with subsequent averaging. One can also argue that in the 
particular example of the coupled Duffing oscillators mentioned above it is easier to obtain equations 
similar to (11) (or to (24), with insignificant rescaling) directly from the Hamiltonian and without 
unnecessary complex transformations.

This simplification alone would be insufficient to define the AA-based averaging as separate 
method for analysis o f the energy transport in essentially nonlinear systems. However, relationships 
(7-11) demonstrate that the AA formalism is not just the reformulation - it may be more general, than 
the CxA approach. The latter employs only the AA variables induced by the linear oscillator (and 
thus, technically, is a variation of a harmonic balance with slowly varying amplitudes, [24]). The 
general AA formalism is free from this restriction and can use transformations induced by any single- 
DOF Hamiltonian. In the next Section we are going to demonstrate that with the help of transition to 
the AA variables one can explore the energy transport in model systems with extreme nonlinearity, 
not treatable by the CxA approach.

3. Energy transport in coupled strongly nonlinear oscillators.

Let us begin with the strongest possible nonlinearity and consider a pair of identical impact
oscillators, coupled by a linear spring of stiffness s (see Figure 1).

O. V. Gendelman, T. Sapsis

— '  J  1 1—

Figure 1. Pair of impact oscillators coupled by linear spring.

The single impactor is a particle with mass m moving in a channel of length 2d, with elastic 
collisions at the ends of the channel. For simplicity, it is supposed that the equilibrium length of the 
spring corresponds to u1 -  u2 = 0. Here uk denotes the displacement o f the impactor with respect to the 
middle point of the respective channel.

In Figure 2 we present the results of the simulation for the system depicted in Figure 1. Initially 
both impactors are located at the middle points of the channels, i.e. u1(0) = u2(0) = 0 ; initial velocity 
of impactor 1 is j/1 (0) = 0.4 (this particular value is not significant, since one can rescale the time), 
and the initial velocity of impactor 2 is zero, u2(0) = 0 . Without restricting the generality, we suppose 
m = 1, d  = 1. One can observe that for a value of coupling s  = 0.058 the energy remains localized at 
impactor 1. A minimal increase of the coupling to s  = 0.059 yields a qualitative change of the 
behavior: the impactors exchange energy. This process can be identified as nonlinear beating in the 
vibro-impact system.

To explain this transition from the localization to energy exchange, we will explore the AA 
formalism. Each of the impactors induces the following transformation to AA variables [4]:

—2 I \  2d 
8m d2

H k = -— y , uk = —  arcsin(sin 9t ), k = 1,2 (29)

The Hamiltonian of the system presented in Figure 1 will be expressed in terms of the AA 
variables as follows:

_ 2( i  2 . 12 \ 2 sd  2
H  = — —— H----- — (arcsin^in^) -  arcsin(sin02))2 (30)

8md —
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Figure 2. Time series for displacements in coupled vibro-impact system (Figure 1) with nonzero 
initial velocity of one impactor; a) s  = 0.058 , b) s  = 0.059 . Red (thin solid) line - u1(t) , blue (thick

points) line - u2(t) .

In order to perform the averaging, it is convenient to present the Hamiltonian (30) in the form 
of a Fourier series. The term arcsin(sin0) represents a well-known triangular wave [28, 29]. One can 
easily express it as sine Fourier series and obtain

x 2( I 2 + I 22) 32sd2 (-1)k (sin((2k + 1)01) -  sin((2k + 1)6>2))
H  8md 2 ^  + ~ 4 (2k + 1)2

(31)

If we consider the fundamental 1: 1 resonance, the slow variable will be 3 = d1 - d 2 . Averaging 
of the Hamiltonian (30) thus yields (up to the insignificant constant):

-  x 2( J 2 + J 22) 32sd2 ^  cos((2k +1)5) 
H ~ - r -8m d 2 x 4 (2k + 1)4

Transformation of the action variables according to (7-9) with m0 = n0 = 1 further yields:

(32)

— x 2 N 4(cos4 y /2  + sin4 y / 2) 32sd2 ^  cos((2k +1)5) 
H = -------------------- ;----------------------- :--- /  --------------:---- :

■ X  (2k + 1)48md

x  N 4 
8m d 2

(1
sin y 

2 ) -  - I
cos((2k +1)5) 

(2k + 1)4

(33)

The averaged Hamiltonian (33) is very simple, and it is easy to see that the structure of the 
phase portrait depends on a single parameter

256msd
: x 6N 4

(34)

The evolution of the phase portrait on (5 ,y) surface for varying values of k is presented in 
Figure 3.

2

K
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a) b)

Figure 3. Phase portraits of the averaged system with Hamiltonian (32) for a) k = 0.22 ; b) 
k = 24 / —4 = 0.2464 ; c) k = 0.26. Thick red line denotes the limiting phase trajectory (LPT).

Initial conditions explored in the above numeric simulation (Figure 2) correspond to initial 
conditions (7 ,5 ) = (0,0). This special orbit of averaged Hamiltonian (33) describes initial complete 
concentration of energy at impactor 1. To denote such orbits, L.I. Manevitch [19, 20] coined the term 
“limiting phase trajectory” (LPT), which will be used further on in this paper. We see that for small 
values of the parameter k the LPT (thick red line in Figure 3) remains in the region 0 < y < — / 2 and 
thus the energy is localized at impactor 1. For large values of k the LPT covers all 0 < y < — and thus 
energy exchange between impactors 1 and 2 (nonlinear beatings) is realized. The transition from the 
localization to nonlinear beatings should take place when the LPT will pass through the saddle point 
at y = — / 2 ,5  = — . Values of the averaged Hamiltonian at these two points should be equal; then, one 
obtains the following equation for the critical value of coupling:

h  (0,0) = h  ( y 2 ,—) ^ - K cr £ 1

(2k + 1)4
= - 1 + k y  1 

' 2 + Kcr Y  (2k + 1)4
(35)

Taking into account the identity £
15

„ —  C(4) = — , one obtains: 
k=0(2k + 1)4 16 96

k = 2 4 / —  = 0.2464 (36)

This value of the effective coupling corresponds to the phase portrait presented in Figure 3b. 
It is extremely important to note that the most interesting dynamical feature of Hamiltonian (33), i.e. 
the transition from localization to nonlinear beating, corresponds to passage of the LPT through the 
saddle point. This fact ensures slow evolution of the phase trajectories of interest in the averaged 
system. Thus, one can justify a posteriori the averaging procedure in Eqs. (30-33) despite the lack of 
formal small parameter. This observation is generic: closeness of the averaged phase trajectory to the 
saddle point can provide a slow time scale, necessary for the validity of the ad hoc averaging.

To compare the theoretical prediction with the numerical simulations, we first relate the value 
of the integral of motion N  to the initial conditions. This parameter can be evaluated from expression 
for kinetic energy as follows:

u1(0) = u2(0) = 0, j/1(0) = V0, u2(0) = 0;
—2I 2(0) _ —2 N 4

8 8

V2 4V 2 
= ^  N 4 = V

2 — t  (37)

Combining (34), (36) and (37), one obtains the following simple expression for the critical 
value of coupling:

3V2
(38)

For V0 = 0.4 one obtains scr = 0.06 for the transition between the localization and nonlinear 
beatings, in excellent agreement with numeric results presented in Figure 2.

—

8
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Conclusions

The findings presented above lead to the conclusion that the averaging based on the action- 
angle variables offers a convenient framework for exploration of structure and bifurcations of the 
slow flow, including transitions from the localization to the energy exchange. It turns out that the 
complexification-averaging procedure, used previously for similar problems, constitutes a particular 
case of a more general AA approach. In the case of the CxA, the transition to the AA variables is 
induced by the Hamiltonian of a linear oscillator. The AA approach is more general and allows 
exploration of the slow flow in systems with extreme nonlinearity, such as the coupled vibro-impact 
oscillators.

One can observe an interesting peculiarity of the explored systems. The averaging procedure 
may be justified a posteriori, due to slowing down the dynamics due to passage of the phase 
trajectory of interest close to the saddle point. Thus, the averaging procedure may be justified even in 
the absence of the formal small parameter. Of course, this idea has severe restrictions -  such claims 
are valid only for the considered slow-flow phase trajectory, and not for the complete phase portrait. 
For instance, Figure 2 leaves the impression that the global dynamics for given set of parameters and 
energy level may be chaotic -  like. However, even such partial information may be of considerable 
value, since this phase trajectory can describe important transformations in the global flow.
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