УДК 621.165

А. В. ЛАПУЗИН, канд. техн. наук, доц.; доц. НТУ «ХПИ»; *В. П. СУББОТОВИЧ*, д-р техн. наук, с.н.с.; проф. НТУ «ХПИ»; *Ю. А. ЮДИН*, канд. техн. наук, доц.; проф. НТУ «ХПИ»; *А. Ю. ЮДИН*, канд. техн. наук, с.н.с.; доц. НТУ «ХПИ»; *В. Л. ШВЕЦОВ*, канд. техн. наук; главный конструктор паровых и газовых турбин ОАО «Турбоатом», Харьков; *И. И. КОЖЕШКУРТ*, начальник отдела ОАО «Турбоатом», Харьков; *В. А. КОНЕВ*, начальник сектора ОАО «Турбоатом», Харьков

ОБ АЭРОДИНАМИЧЕСКОЙ ЭФФЕКТИВНОСТИ РЕШЕТОК ПРОФИЛЕЙ СОПЛОВЫХ ЛОПАТОК МОЩНЫХ ПАРОВЫХ ТУРБИН

Проведено обобщение и анализ результатов собственных и привлеченных экспериментальных исследований решеток профилей сопловых лопаток, которые показали положительное влияние на аэродинамическое совершенство решеток удлинителей к стандартным профилям. Экспериментально доказано, что для решетки с относительно короткими лопатками оптимальное проектирование поворотных частей межлопаточных каналов с помощью обратной аэродинамической задачи позволило существенно уменьшить суммарные потери за счет доли концевых потерь.

Ключевые слова: решетка сопловых профилей, удлинитель, концевые и профильные потери, напряжения в лопатках, обратная аэродинамическая задача.

Введение

Малые высоты сопловых лопаток (1) и большие осевые усилия, действующие на диафрагмы ЦВД мощных паровых турбин, приводят к необходимости увеличивать осевую ширину решеток B (рис. 1a), что является одной из основных причин высоких концевых потерь $\zeta_{\rm K}$ в решетках сопловых лопаток без удлинителей. Для снижения концевых потерь в турбине K-300-240 выпуска 1960 г. Харьковский турбинный завод использовал диафрагму с узкими направляющими лопатками (осевая ширина которых B_x значительно меньше B, рис. 1 δ) и силовыми стойками [1], а в турбине K-300-240-2 выпуска 1970 г. стал применять профили с удлиненной входной частью типа H4У (рис. 1 ϵ). Аэродинамические характеристики прямых пакетов профилей типа H4У приведены в отраслевом стандарте [2]. 20 типоразмеров стандартных профилей отличаются относительным удлинением входной части $\overline{L} = (B - B_x)/b_x$, а также абсолютными размерами исходного профиля, а именно: b_x – хордой исходного профиля, B_x – осевой шириной решетки исходных профилей. Огромный объем исследований прямых пакетов решеток и ступеней с профилями типа H4У выполнен в ОАО «Турбоатом», НТУ «ХПИ» [3] и НПО ЦКТИ [2].

Цель исследования

Целью исследования является определение области применения стандартных решеток типа H4, H4У и решеток с волнообразной формой профиля, а также количественная оценка влияния формы удлинителей входной части профиля на потери в равнопрочных сопловых решетках.

1 Прочностные характеристики

Анализ результатов расчета напряжений в сопловых лопатках по методикам [4, 5] показывает, что в первом приближении независимо от удлинения \overline{L} решетки типа

© А.В. Лапузин, В.П. Субботович, Ю.А. Юдин, А.Ю. Юдин, В.Л. Швецов, И.И. Кожешкурт, В.А. Конев, 2014

Н4У равнопрочны, если их осевая ширина В одинакова (табл. 1).

В табл. 1: Z_c – число сопел, определенное по формуле $Z_c = \pi D_{cp} / (\bar{t}_x b_x)$ при $D_{cp} \approx 1000$ мм, $\bar{t}_x = t/b_x = 0.75$; W_u – момент сопротивления входной кромки профиля относительно оси, параллельной фронту выходных кромок, κ_M – коэффициент, зависящий от числа сопловых лопаток и отношения наружных диаметров тела и обода диафрагмы.

Рис. 1 – Варианты равнопрочных решеток: $a - H4; \ 6 - H4 + силовые стойки; \ e - H4У$

Таблица 1

Геометрические и	прочностные хара	ктеристики	решеток типа Н4	У при \bar{t}_x	= 0,75, B =	= 125 мм
1	± 1	.	±			

Решетка	<i>В_х</i> , мм	<i>В</i> , мм	<i>b_x</i> , мм	Ī	$\frac{b_x}{B}$	Z _c	W_u , cm ³	$\frac{\kappa_{\rm M}}{W_u}$	$Z_{c}W_{u}$
H4	125	125	227	0	1,818	19	77,0	0,052	1463
Н4У-69-125	69	125	125	0,45	1	34	55,3	0,052	1880
Н4У-55-125	55	125	100	0,70	0,8	42	43,3	0,053	1818
Н4У-44-125	44	125	80	1,00	0,64	53	32,8	0,060	1738
Н4У-35-125	35	125	64	1,40	0,51	66	23,6	0,071	1557

По методике [4] напряжение на входной кромке лопатки $\sigma = \frac{\kappa_{\rm M}}{W_u} \frac{\Delta P D^3}{1536}$

одинаково для диапазона $\overline{L} = 0-0,7$. Переход к решетке H4У-35-125 с максимальным удлинением входной части повышает напряжение в 1,36 раза. Расчет напряжений по методике [5] $\sigma = 1,2\Delta PD(D-d)l/(W_uZ_c)$ показывает, что при фиксированной осевой ширине решетки небольшое удлинение входной части профиля $\overline{L} = 0,45$ снижает напряжение на 29 %, а в решетке с максимальным удлинением $\overline{L} = 1,4$ напряжение даже на 6 % ниже, чем в решетке без удлинителя ($\overline{L} = 0; b_x = 227$ мм). В вышеприведенных формулах ΔP – перепад давления на диафрагме, D – наружный диаметр обода, d – внутренний диаметр тела диафрагмы.

2 Аэродинамическая эффективность решеток профилей типа Н4У

На рис. 2, который построен по данным [2], показано влияние относительного удлинения входной части профиля \overline{L} на интегральные потери решеток для разных отношений B/l, характеризующих относительную осевую ширину решеток. В работе [3] отмечается, что при сравнении равнопрочных диафрагм с лопатками профилей H4 и лопатками с удлиненной входной частью (профиль H4У) удобно пользоваться параметром B/l. При B/l = const и \overline{t}_x = const сравниваемые решетки, как отмечалось

выше, в первом приближении равнопрочны.

В подрисуночной подписи к рис. 2: $\overline{\delta}_x = \delta/b_x$ – относительная толщина выходной кромки, $\overline{t}_x = t/b_x$ – относительный шаг, $\overline{z} = z/b_x$ – относительное расстояние от фронта выходных кромок до сечения, где измеряются параметры потока, Re_{1tx} – число Рейнольдса, определенное по хорде исходного профиля b_x .

Рис. 2 – Влияние \overline{L} и B/l на интегральные потери в решетках типа H4У при $M_{1t} = 0.35$, Re_{1tx} = $9 \cdot 10^5$, $\alpha_0 = 90^\circ$, $\alpha_{13\varphi} = 13.7^\circ$, $\overline{t}_x = 0.75$, $\overline{\delta}_x = 0.015$, $\overline{z}_x = 0.2$: \blacklozenge , \blacksquare , \blacktriangle , \times , Δ – H4У при $\overline{L} = 0$; 0.45; 0.7; 1; 1.4; \circ , \bullet – H4УM до и после коррекции числа Рейнольдса

В основе методики определения интегральных потерь ζ в решетках с удлиненной входной частью профиля лежит экспериментально подтвержденное положение о том, что профильные $\zeta_{\rm пр}$ и концевые $\zeta_{\rm K}$ потери в ней определяются в основном профильными $\zeta_{\rm прx}$ и концевыми $\zeta_{\rm Kx}$ потерями в решетке исходных профилей, имеющих осевую ширину B_x (см. рис. 16). При фиксированных размерах хорды исходного профиля b_x и шага решетки \bar{t}_x даже небольшое удлинение входной части, например, до значения $\bar{L} = 0,45$ снижает напряжения в лопатках в 4,4 раза. Профильные потери при этом увеличиваются в $\kappa_7 = 1,08$ раза, а концевые в $\kappa_9 = 1,16$ раза.

Приведенные на рис. 2 интегральные потери вычислялись по формуле $\zeta = \zeta_{\text{пр}} + \zeta_{\text{к}} = \zeta_{\text{прx}} \kappa_7 + \zeta_{\text{кx}} \kappa_9$, в которой коэффициент $\zeta_{\text{прx}} = 0,028$, коэффициент $\zeta_{\text{кx}} = 0,019b_x/l = 0,019(B/l)(b_x/B)$, а коэффициенты κ_7 и κ_9 являются функцией \overline{L} [2].

Линейная зависимость коэффициента концевых потерь $\zeta_{\kappa x}$ от отношения $b_x/l \approx 1$ справедлива до значения $b_x/l \approx 3$, хотя уже при $b_x/l \approx 2$ зоны концевых потерь начинают смыкаться. Согласно стандарту [2] профиль H4 может быть использован только для B/l < 1,65.

Во всех диафрагмах ЦВД турбины К-310-23,5-3 с целью унификации используется профиль H4У-35-125 с максимальным удлинением $\overline{L} = 1,4$, а отношение B/l изменяется в диапазоне от 1,97 до 5,68. В этом диапазоне, как видно из рис. 2, потери сопловых решеток минимальны при $\overline{L} = 1,4$.

3 Решетка Н4УМ с модернизированной формой удлинителя профиля

При фиксированных геометрических параметрах решетки исходных профилей H4 ($b_x, \bar{t}_x, \alpha_{19\phi}, b_x/l$) удлинитель с простейшими прямолинейными очертаниями и толстой входной кромкой, как отмечалось выше, повышает как профильные так и концевые потери ($\kappa_7 > 1$, $\kappa_9 > 1$). Радиусное описание образующих удлинителя, более тонкая входная кромка [6] позволяют при $\bar{L} = 0,7$ снизить практически до единицы указанные коэффициенты. Как видно из рис. 2, у решетки H4УM при B/l = 1,65 интегральные потери ниже на ~ 1 % по сравнению с решеткой H4У.

Решетка профилей Н4УМ [6] выполнена с геометрическими параметрами $\alpha_{19\varphi} = 13,3^{\circ}$, $\overline{\delta}_x = 0,015$, $\overline{t}_x = 0,78$, $\overline{L} = 0,7$ и исследована при $M_{1t} = 0,375$, $Re_{1tx} = 3 \cdot 10^5$, $\overline{z}_x = 0,2$ в широком диапазоне углов атаки. Все перечисленные параметры кроме числа Рейнольдса практически совпадают с параметрами решеток типа Н4У на рис. 2, что и позволило корректно сравнить эффективность решеток Н4УМ и Н4У. Верхняя пунктирная линия на рис. 2 – результат испытаний Н4УМ при $Re_{1tx} = 3 \cdot 10^5$, нижняя – скорректированные данные для $Re_{1tx} = 9 \cdot 10^5$.

4 Решетка С-90-15АД с волнообразной формой удлинителя

В работах Московского энергетического института [7, 8] существенное снижение концевых потерь при фиксированных параметрах исходной решетки С-90-15А было достигнуто с помощью небольшого ($\overline{L} = 0,32$) удлинителя, имеющего волнообразную форму. Такая форма удлинителя сопловых лопаток в решетке С-90-15АД при $b_x/l = 1,23$, $M_{1t} = 0,5$ обеспечила снижение концевых потерь в 2 раза по результатам влажнопаровых испытаний [7] и в 1,3 раза по результатам испытаний на воздухе [8] (коэффициент к₉ = 0,5 и 0,77 соответственно). Дельфинообразная форма сопловых лопаток привела к увеличению коэффициента профильных потерь примерно на 0,5 %, однако по результатам испытаний на воздухе при B/l = 2 интегральные потери в решетке С-90-15АД не менее чем на 1% ниже, чем в исходной решетке С-90-15А.

5 Решетка ОРТ2У2 с волнообразной формой исходного профиля

Одно из направлений совершенствования решеток с короткими лопатками связано с поиском более экономичного исходного профиля (H4, C-90-15A, H1, H5, H6 и др.). В зависимости от уровня B/l этот исходный профиль может использоваться как без удлинителя (рис. 1*a*), так и с удлинителем той или иной формы и величины.

В НТУ «ХПИ» [9] на основе решения обратной задачи был спроектирован волнообразный профиль без удлинителя ОРТ2 для решетки B/l = 1,9, $\bar{t} = 0,645$. Как и дельфинообразный профиль С-90-15АД, он имеет выпуклость на «животике» и вогнутость на «спинке». По результатам испытаний концевые потери в решетке ОРТ2 вдвое ниже, чем в решетке Н4, а профильные выше. При $\bar{t} = 0,645$ решетка ОРТ2 экономичнее решетки Н4, если отношение B/l > 0,6, а при B/l = 1,725 интегральные потери в ней на 2 % ниже.

Положительные результаты, полученные от удлинения входной части профиля

H4 (рис. 2), модернизации формы удлинителя [6–8] и формы исходного профиля [9], были положены в основу создания решетки ОРТ2У2 с относительно небольшим удлинителем $\overline{L} = 0,54$.

Форма профиля и межлопаточного канала решетки ОРТ2У2, а также рассмотренных выше решеток Н4У, Н4УМ с $\overline{L} = 0,7$ и решетки МЭИ С-90-15АД с $\overline{L} = 0,32$ показана на рис. 3 (пунктиром отмечена ширина B_x исходного профиля).

В табл. 2 приведены геометрические характеристики этих решеток, а в табл. 3 данные о потерях и условиях эксперимента.

Таблица 2

Решетка	\overline{L}	<i>В_x</i> , мм	<i>В</i> , мм	<i>b_x</i> , мм	δ, мм	$\overline{\delta}_{x}$	\bar{t}_{χ}	$\alpha_{1 \ni \varphi}$	<i>l</i> , мм
Н4У-55-125	0,7	55	125	100	1,5	0,0150	0,75	13,7°	33,3
Н4УМ	0,7	22,1	51,5	42	0,64	0,0150	0,78	13,3°	31
С-90-15АД	0,32	38,7	53,4	61,5	0,8	0,0130	0,75	15°	50
ОРТ2У2	0,54	34,66	66,09	58,2	0,32	0,0055	0,79	13,8°	40

Геометрические параметры решеток

Таблица 3

Решетка	\overline{z}_x	b_x/l	B/l	M_{1t}	Re _{1tx}	α ₀	ζ_{np}	ζ_{κ}	ζ
Н4У-55-125	0,2	3	3,75	0,35	$9 \cdot 10^5$	90°	0,0316	0,0707	0,1023
Н4УМ	0,2	1,36	1,65	0,375	$3,05 \cdot 10^5$	90°	0,0370	0,03	0,067
С-90-15АД	I	1,23	1,07	0,5		90°	0,0370	0,013	0,050
ОРТ2У2	0,19	1,455	1,65	0,4	$5,2.10^{5}$	90°	0,0374	0,014	0,0514

Потери в решетках

Как видно из рис. 4*a*, построенного по фактическим экспериментальным данным (табл. 3), минимальные концевые и интегральные потери при B/l > 0,5 имеет вариант ОРТ2У2. Только в решетках с относительно длинными лопатками (B/l < 0,5) она уступает решетке H4У-55-125, имеющей более низкие профильные потери. Если экспериментальные данные, приведенные в табл. 3, привести к одинаковым условиям ($\text{Re}_{ltx} = 9 \cdot 10^5$, $\overline{\delta}_x = 0,055$), то лучшим из всех рассмотренных вариантов при B/l < 1,65 будет вариант H4УM, имеющий низкие профильные потери. Лишь при B/l = 1,65 экономичность решетки OPT2Y2 не уступает экономичности решетки H4VM. При B/l = 1,65 интегральные потери в решетках OPT2Y2 и H4VM на ~ 1 % ниже, чем в решетке H4Y с $\overline{L} = 0,7$ и на ~ 3 % ниже, чем в решетке H4. Минимальные концевые потери как при $b_x/l = \text{const}$ так и B/l = const имеет вариант OPT2Y2 (рис. 5).

ЕНЕРГЕТИЧНІ ТА ТЕПЛОТЕХНІЧНІ ПРОЦЕСИ Й УСТАТКУВАННЯ

Рис. 5 – Приведенные ($\text{Re}_{1tx} = 5 \cdot 10^5$, $\overline{\delta}_x = 0,05$) концевые потери в сопловых решетках: × – H4; + – С-90-15А; • – С-90-15АД; • – Н4У-55-125; □ – Н4УМ; Δ – ОРТ2У2: $a - \zeta_x = f(B/l); \quad \delta - \zeta_x = f(b_x/l)$

6 Оптимальное удлинение входной части профиля \overline{L} решетки типа H4V

Из рис 2. следует, что при фиксированных \bar{z}_x , $\bar{\delta}_x$ и B/l > 0,5 интегральные потери снижаются с ростом \bar{L} . Однако, если учесть, что при проектировании ступени заданными являются не только параметры B и l, но и абсолютные величины межвенцового зазора z и толщины выходной кромки δ , то окажется, что далеко не всегда максимальное удлинение $\bar{L} = 1,4$ является оптимальным, поскольку увеличение \bar{L} сопровождается уменьшением хорды исходного профиля, а следовательно увеличением \bar{z}_x , $\bar{\delta}_x$. Влияние последних параметров на потери можно ориентировочно учесть по следующим формулам:

$$\begin{aligned} \zeta_{\Pi p} &= 0.028\kappa_7 + \left(\overline{\delta}_x - 0.015\right) + 0.04\left(\overline{z}_x - 0.2\right);\\ \zeta_{\kappa} &= \left(0.009 + 0.05\overline{z}_x\right) \left(\frac{B}{l}\right) \left(\frac{b_x}{B}\right) \kappa_9 + 0.13\left(0.015 - \overline{\delta}_x\right) \left(\frac{B}{l}\right) \left(\frac{b_x}{B}\right);\\ \zeta &= \zeta_{\Pi p} + \zeta_{\kappa}. \end{aligned}$$

Коэффициенты к₇ и к₉ зависят только от \overline{L} , которое определяет также отношение b_x/B , влияющее на $\overline{\delta}_x = (\delta/B)/(b_x/B)$ и $\overline{z}_x = (z/B)/(b_x/B)$. Расчеты показывают, что для ступени с очень короткими лопатками (B/l = 6, B = 80 мм, l = 13,3 мм, z = 8,5 мм, $\delta = 0,6$ мм) минимальные потери имеет вариант с $\overline{L} = 1,4$, а для

ступеней с более длинными лопатками (B/l = 2,5, l = 32 мм) вариант с $\overline{L} = 0,45$ (рис. 6), а при B/l = 1 – вариант без удлинителя.

Выводы

1) Интегральные потери в решетках типа H4У, отличающихся величиной удлинения \overline{L} , необходимо сравнивать при одинаковых значениях B/l, обеспечивающих условие равной прочности.

2) При фиксированных параметрах B/l, \bar{z}_x , $\bar{\delta}_x$ увеличение \bar{L} позволяет существенно снизить интегральные потери в решетках типа H4У.

3) При фиксированных параметрах z, δ , \bar{t}_x каждому отношению B/l соответствует оптимальное значение \bar{L} решетки типа Н4У. При B/l < 1 оптимальной является решетка Н4 без удлинителя, если $\bar{z}_x < 0.2$, $\bar{t}_x = 0.75$.

4) Модернизация формы удлинителя (переход от Н4У к Н4УМ) позволяет снизить на ~0,2 % профильные потери и на ~0,8 % концевые потери при B/l = 1,65.

5) Решетки с волнообразными профилями (С-90-15АД, ОРТ2, ОРТ2У2) характеризующиеся высокими профильными и низкими концевыми потерями, могут

найти применение для ступеней с относительно короткими лопатками.

Список литературы: 1. Федоров, М. Ф. Экспериментальное исследование концевых потерь в конфузорных решетках и сопловых сегментах диафрагм паровой турбины [Текст] / М. Ф. Федоров, Ю. И. Погорелов, В. А. Кусенко // Харьковский политехнический институт. Сер. Машиностроение (турбиностроение). - 1957. - Том XXIV, Вып. 6. - С. 15-37. 2. Профили направляющих лопаток постоянного сечения паровых стационарных турбин. Типы основные параметры и размеры. ОСТ 108.260.01-84: утв. Министерством энергетического машиностроения 31.01.84; введен в действие с 01.07.84. – Л.: НПО ЦКТИ, 1985. – 62 с. 3. Галацан, В. Н. Исследование сопловых турбинных лопаток с увеличенным моментом сопротивления [Текст] / В. Н. Галацан, Д. Н. Пясик, В. А. Нестеренко [и др.] // Теплоэнергетика. – 1990. – № 5. – С. 39–42. 4. Жирицкий, Г. С. Конструкция и прочность деталей паровых турбин [Текст] / Г. С. Жирицкий, В. А. Стрункин. – М.: Машиностроение, 1968. – 520 с. 5. Шубенко-Шубин, Л. А. Прочность элементов паровых турбин [Текст] / Л. А. Шубенко-Шубин, Д. М. Гернер, Н. Я. Зельдес [и др.]. – М.; Л.: Машгиз, 1962. – 567 с. 6. Гречаниченко, Ю. В. Потери энергии в лопатках конечной длинны при больших углах атаки [Текст] / Ю. В. Гречаниченко, В. А. Нестеренко, Д. И. Демичева [и др.] // Теплоэнергетика. – 1994. – № 4. – С. 12–15. 7. Дейч, М. Е. Экспериментальное исследование сопловой решетки с уменьшенными концевыми потерями [Текст] / М. Е Дейч, Ш. В. Делер, Б. А. Коршунов // Теплоэнергетика. – 1994. – № 10. – С. 39–42. 8. Коршунов, Б. А. Влияние относительной высоты лопаток на потери в турбинных сопловых решетках [Текст] / Б. А. Коршунов, А. А. Тищенко, А. П. Щербаков [и др.] // Теплоэнергетика. – 2005. – № 6. – С. 19-22. 9. Юдин, А. Ю. Прямая, гибридная и обратная задачи для оптимального проектирования элементов проточной части турбомашин: дис. ... канд. техн. наук: 05.05.16; защищена 18.05.2006; утв. 04.07.2006 / Юдин Александр Юрьевич. - Х., 2005. - 135 с.

Bibliography (transliterated): 1. Fedorov, M. F., Ju. I. Pogorelov and V. A. Kusenko. "Jeksperimental'noe issledovanie koncevyh poter' v konfuzornyh reshetkah i soplovyh segmentah diafragm parovoj turbiny." *Har'kovskij politehnicheskij institut. Ser. Mashinostroenie (turbinostroenie)*. Vol. XXIV.6. 1957. 15–37. Print.
2. OST 108.260.01-84. *Profili napravljajushhih lopatok postojannogo sechenija parovyh stacionarnyh turbin. Tipy osnovnye parametry i razmery*. Leningrad: NPO CKTI, 1985. Print. 3. Galacan, V. N., et al. "Issledovanie soplovyh turbinnyh lopatok s uvelichennym momentom soprotivlenija." *Teplojenergetika* 5 (1990) 39–42. Print.
4. Zhirickij, G. S., and V. A. Strunkin. *Konstrukcija i prochnost' detalej parovyh turbin*. Moscow: Mashinostroenie, 1968. Print. 5. Shubenko-Shubin, L. A., et al. *Prochnost' jelementov parovyh turbin*. Moscow: Mashigiz, 1962. Print. 6. Grechanichenko, Ju. V., et al. "Poteri jenergii v lopatkah konechnoj dlinny pri bol'shih uglah ataki." *Teplojenergetika* 4 (1994): 12–15. Print. 7. Dejch, M. E., Sh. V. Deler and B. A. Korshunov. "Jeksperimental'noe issledovanie soplovoj reshetki s umen'shennymi koncevymi poterjami." *Teplojenergetika* 10 (1994): 39–42. Print. 8. Korshunov, B. A., et al. "Vlijanie otnositel'noj vysoty lopatok na poteri v turbinnyh soplovyh reshetkah." *Teplojenergetika* 6 (2005): 19–22. Print. 9. Judin, A. Ju. *Prjamaja, gibridnaja i obratnaja zadachi dlja optimal'nogo proektirovanija jelementov protochnoj chasti turbomashin: dis. ... kand. tehn. nauk.* Kharkov, 2005. Print.

Поступила (received) 15.02.2014