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Abstract  
The multi-section transport conveyor model based on the neural network for predicting the 

output flow parameters is considered. The expediency of using sequential and batch modes of 

training of a neural network in a model of a multi-section transport conveyor has been 

investigated. The quality сriterion of predicting the output flow parameters of the transport 

system is written. Comparative analysis of sequential and batch modes of neural network 

training is carried out. The convergence of the neural network training process for different 

sizes of the training batch is studied. The effect of the batch size on the convergence rate of the 

neural network learning process is estimated. The results of predicting the output flow 

parameters of a multi-section transport system for models based on a neural network that was 

learned using training batches of different sizes are presented. A nonlinear relationship between 

the batch size and the convergence rate of the neural network learning process is demonstrated. 

The recommendations are given on the choice of learning modes for a neural network in the 

model of a multi-section transport conveyor. The choice of the initialization value of the node 

participating in the formation of the bias value is investigated. The qualitative regularities 

characterizing the influence of the choice of the node initialization value on the forecasting 

accuracy of the output flow parameters of the transport system are studied. 
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1. Introduction 

To design control systems for the speed of the belt [1, 2] and the flow of material entering the 
conveyor input from the accumulating bunker [3, 4], models of the transport conveyor are used, the 

foundation of which is the aggregated equation of state of the transport system flow parameters [5], the 

equations of system dynamics [6], finite element method [7]. The use of the finite element method 
makes it possible to take into account the uneven distribution of material along the transportation route 

[8, 9] when designing a control system for the flow parameters of a conveyor system. Taking into 

account the uneven distribution of material allows you to reduce the cost of transporting material [10] 

due to the optimal control of the speed of the belt or the flow of material entering the conveyor input 
from the accumulating bunker.  When designing control systems for flow parameters of a multi-section 

transport system [11, 12], the use of a model based on the finite element method becomes difficult due 

to the high cost of computing resources. In this case, along with the use of the analytical PiKh-model 
of the transport conveyor [13], it is advisable to use linear regression equations [14, 15, 16] and models 

based on the neural network [17, 18, 19] to predict the state of the flow parameters of the transport 

system. The relevance of using models based on a neural network increases with an increase in the 
number of sections of the transport system. For a modern transport conveyor [14, 20, 21], containing 

several dozen separate sections, the use of models based on a neural network is of particular importance. 
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Indeed, the construction of an optimal control algorithm for the flow parameters of the transport 
conveyor based on the analytical PiKh-model of the transport conveyor [13] already for several sections 

leads to cumbersome analytical calculations with a fairly simple control quality criterion [22, 23]. With 

an increase in the number of sections, the complexity of the algorithm increases nonlinearly. This is 

due to the fact that the transport conveyor is a complex dynamic distributed system, the output flow 
parameters of the sections of which contain a time-variable transport delay. The use of neural networks 

for modeling the state of the output flow parameters of the transport conveyor allows obtaining fairly 

simple approximate models, which makes it possible to design control systems for the flow parameters 
of the transport conveyor with satisfactory accuracy. In this regard, the issue of analyzing the factors 

affecting the accuracy of models of transport conveyors based on a neural network becomes relevant. 

2. Problem statement 

When constructing a model of a multi-section conveyor based on a neural network (multilayer 
perceptron), it is required to select the neural network architecture, activation function, neural network 

training method, neural network training rate, initial initialization method, weight coefficients. This list 

can be significantly expanded and detailed. 
A sufficient number of papers are had in which a model of a transport system based on neural 

networks of different architectures is considered. The architecture of the neural network 13-5-1 (13 

nodes in the input layer, 4 nodes in the hidden layer, and one node in the output layer) is used in a model 

for diagnosing the level of wear of a conveyor belt [17]. To develop a control system for the speed of a 
transport conveyor belt, a model based on a neural network with architecture 3-4-3 [24] and a model 

based on a neural network of three levels [25] are considered. Despite the fact that the choice of the 

neural network architecture has a significant impact on the learning rate and the accuracy of the 
predicted model of the explained parameters [26, 27, 28] when constructing the transport conveyor 

model, this issue is not given due attention. The choice of the neural network architecture, like the other 

parameters of the model listed above, is quite often made by the developer heuristically. In this regard, 
it becomes necessary to analyze the accuracy of the model depending on the value of the selected factor. 

This study analyzes the impact of  

a) selection of the bias-node value in the hidden layer of the neural network;  

b) selection of the training mode (sequential or batch); 
on the learning rate of the neural network and the accuracy of predicting the flow parameters of the 

transport conveyor model based on the neural network. 

The choice was made on the specified meta-parameters of the model for the reason that, in 
comparison with the issue of choosing the architecture of a neural network, the issues of choosing these 

parameters when constructing a model of a transport system can have a significant impact on the 

accuracy of forecasting and are less studied. 

3. Main material 

3.1. General description of the transport system model 

Let us analyze how the choice of the bias-node value in the hidden layer of the neural network and 
the choice of the training mode affect the accuracy of predicting the flow parameters of a conveyor-

type transport system of a multi-section transport conveyor, the structural diagram of which is shown 

in Figure 1 [29, 30]. The structural diagram of the conveyor proposed for analysis and the corresponding 
data set were used in a number of works for a qualitative analysis of the parameters of the transport 

conveyor. A detailed analysis of the dataset that will be used to train the neural network in this study is 

presented in [30]. Each individual m –th section  Mm ..1  in the transport conveyor model has 

parameters: the section transport route length m , the material flow at the section input )( m , the 

conveyor belt speed )(mg и the output material flow from the section )(1 m, . The parameters of 

the model are dimensionless, which makes it possible to use the theory of the similarity of production 
systems in the analysis of the transport conveyor. The technique for constructing a dataset is presented 
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in the paper [30]. The data set corresponds to the case of a transport system functioning with 
dynamically changing flows of incoming material (Figure 2) entering the transport system, and 

dynamically regulable belt speed for each separate section of the conveyor (Figure 3).The flow of 

material from the 6-th bunker is divided into sections 7 and 8 in the ratio 3/2)(/)( 87  . The 

length m  of the individual sections is different, represented by proportions

 6,0:5,1:1:5,1:8,0:7,0:5,0:1...: 821  .  

 

 
Figure 1: The structural diagram of the transport conveyor 

 

 
Figure 2: Input material flow )( m  for the m –th section of the transport conveyor 

 

 
Figure 3: Belt speed )(mg  for the m –th section of the transport conveyor 
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The values of the output material flow )(1 m,  from the training dataset are characterized by the 

distribution function shown in Figure 4 and are determined through the values of the input material flow

)( m  and the belt speed )(mg  of a separate section: 

   )())(1())(1(H)(
)(

)(
)(11)1(1m 









mmmmm

m

m
gGGg

g
GH,

m

m 



 , 

  



dgG mm 
0

)( . 

(1) 

Equation (1) calculates the output flow taking into account the initial distribution of material along the 

transport route. The initial distribution of the material )( mm   does not depend on the parameters

)( m , )(mg , therefore the initial distribution of the material introduces an error in forecasting [30]. 

In this regard, the data set for training, the characteristic of the parameters of which is shown in Figure 

4 was obtained under the condition mmG  )( . Solving the equations 
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dg
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 (2) 

allows you to calculate the amount of transport delay )(m  or a separate section and the conveyor 

as a whole. 

 
Figure 4: The density of the distribution of the belt speed )(mg  m –th section of the transport 

conveyor 
 

To analyze the influence of the choice of the bias-node value in the hidden layer of the neural 

network and the choice of the training mode on the accuracy of predicting the flow parameters of the 
conveyor-type transport system, a neural network with the architecture 12-15-2 will be used, the input 

and output nodes of which are numbered as follows (Figure 5): 

)(23 mmx   )(13 mm gx   mmx 3  )( 7171  ,y   )( 8182  ,y   (3) 

A similar approach to the numbering of input parameters and output parameters of the transport 

conveyor was proposed in paper [31].  The number of nodes in the hidden layer is set in accordance 
with the recommendations given in [26, 27, 32, 33]. When forming a neural network, a logistic  

)exp(1
)(

bx

a
xf


  4a  1b  (4) 

and linear activation function 
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was used. The parameters of the activation function are determined as a result of subsequent tuning, 

which ensures the maximum quality of forecasting the streaming parameters of the transport system. 

 

Figure 5: Input and output parameters of the neural network in the transport conveyor model 
 

The training data set contains 410eN  examples of the sequential state of the transport system. 

The training of the neural network has been carried out for 410 э epochs. The criterion for the quality of 

training was the value mean squared error (MSE) 
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3.2. Sequential and batch modes of neural network training 

The sequential neural network training method is to sequentially provide examples of epochs from 

the training dataset, updating the weights after each training example. For each learning epoch, 

examples from a set can come in a given order or in random order.  The learning error for the n- th 
example (n=1..N) is determined by the expression 
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where nvL
d  is the value of the output neuron in the training set; nLvL

y  is the generated value by the 

output neuron; LV is number of nodes in the output layer. Let's assume that the neural network contains 

 1L  layers, each of which consists of lV  nodes, Ll ..0 . The input layer corresponds to the value

0l , the output layer corresponds to the value Ll  . The value of the lv th node  ll Vv ..0  in the

l th layer for the n th training example is determined by the expression 
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where  nlvl l
f   is the activation function of neurons in the l th layer. The values for bias-nodes are 

defined as 

constyy lbnl 0   1..0  Ll  (10) 

To change the weights, let's use the gradient descent method [34] 
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which allows us to determine a direction vector in the weight space 
1llvlvw , that reduces the error value 

nE . The parameter   is the learning rate of the error back propagation algorithm. Let's use the 

previously performed transformations in accordance with the notation Figure 6: 
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and obtain an expression for determining the gradient of the function  
1llvlvn wE  expressed through 

the weight coefficients 
1llvlvw  
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Thus, the gradient of the function  
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and can be determined, if the activation function  lf  for l th layer, the values of the nodes of the 

previous layer nvl l
y

1)1(  , the values of the weight coefficients 
1llvlvw  and the errors nlvl

e  for the nodes 

l th layer are known 

 

Figure 6: The schema of nodes for calculating the gradient of a function  
1llvlvn wE  

When conducting a multiple experiments with the aim of repeating it, we will use the same sequence 
of arrival of examples at the input of the neural network within each epoch. This sequence will be the 

same for each variant of the experiment carried out in this study. In batch mode, the weights are adjusted 

after a separate batch set of examples is fed to the input of the neural network within an epoch. The cost 

function is defined as the mean square error for all test cases within a particular epoch 
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By analogy with the sequential training mode, let's define the gradient of the function

 
1llvlvn wE  or the batch training mode: 




















   

N

n

V

v vlv

nLv
nLv

N

n

V

v vlv

nLv

nLv

n

vlv

n
L

L
ll

L

L

L

L
ll

L

Lll
w

y
e

Nw

y

y

E

Nw

E

1 11 1 111

11
  

 

   

 


















   

  



  





















N

n

V

v nvL

nLv
V

v

nLv
vlv

nvL
N

n

V

v

V

v vlv

nvL

nvL

nLv
nLv

L

L
L

l

L

L

L

ll

L

L

L

L

L
ll

L

L

l

L y

y
e

w

y

Nw

y

y

y
e

N
1 1 11

1

1 1 1

1

1

1

1
11

1

1

1
1

1

1

11
  

  
 

 
 










 
























 




2

2
1

2

2

1

1
1

1

1

1

2
2

1 1

1
1

11
L

L
ll

L

L

L

L
ll

L

L

V

v vlv

nvL
nvL

N

n

V

v vlv

nvL
nvL

w

y
e

Nw

y
e

N
  



31 

 

 





 



















N

n

nvl
nlv

nlvl
nlv

N

n vlv

nlv
nlv

N

n

V

v vlv

nvl

nvl l

l

l

l

ll

l

l

l

l
ll

l

l
y

f
e

Nw

y
e

Nw

y
e

N
1

)1(

11 1

1

1

2

2
1

22

22

111




  

The final expression for calculating the gradient of the function  
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is similar to the expression for the sequential training mode (11). 

Averaging over the number of training examples, on the one hand, makes it possible to give a more 
accurate estimate of the gradient vector, and, accordingly, simplifies the process of obtaining 

convergence conditions for the neural network training algorithm, on the other hand, it requires 

additional computational memory to store the error calculation results nlvl
e  and the node value

nvl l
y

1)1(   or each test case as part of a separate package. Another disadvantage associated with the 

considered batch learning mode algorithm is the higher probability of stopping the learning algorithm 

at a local minimum point. When using batch training mode, preprocessing of the training set is required 

in order to eliminate duplicate training examples. The advantage of the batch mode algorithm is the 
ability to parallelize calculations since, for each training example, the values of the weight coefficients 

remain constant. 

4. Analysis of results 

4.1. Comparative analysis of the results of predicting the output flow 
parameters of the transport conveyor using sequential mode and batch mode 
of neural network training 

The results of training a neural network for a batch training mode with one, two, four, and eight 

examples in a batch are shown in Figure 7. The calculation of the gradient was carried out in accordance 

with expression (19). The learning rate for each mode is selected from the condition 

batchN01,0 , (20) 

where batchN  is the number of examples in one batch. Thus, for a numerical experiment with a batch 

consisting of eight elements, the learning rate was set eight times higher  08,0 , than for a 

numerical experiment with a package consisting of one element  01,0 .  

The analysis of the results of the numerical experiment presented in Figure 7 shows that despite the 

fact that with an increase in the batch size batchN  , the learning rate increases proportionally  (20), the 

number of epochs to achieve the same value MSE  increases nonlinearly. This is clearly shown in Figure 

8 in the form of equipotential lines  )(lg, 10 epochNfMSE batch . Analysis of the results of 

computational experiments shows the inefficiency of using the batch mode of training a neural network 

in a distributed model of the transport conveyor, confirming the conclusions made in the works about 
the general inefficiency of batch training for gradient descent learning [35, 36]. 

So, for example, the value 2,0MSE  for batch size 1batchN  01,001,0  batchN  is reached 

at 12th learning epoch, for 2batchN   02,0  is reached at 19th learning epoch, for 4batchN

 04,0  is reached at 113th learning epoch, and finally, for 8batchN   08,0  are required 
410  

learning epoch. 
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Figure 7: A criterion for the quality of training a neural network with a batch size batchN , consisting of 

one, two, four, and eight examples with a learning rate batchN01,0 . 

When parallelizing the training process for the batch mode with the number of elements in the batch 

8batchN , the number of training epochs is required 33 10~batchN  times more than in the sequential 

training mode. In both cases, the same 2,0MSE is achieved.  

An increase in the convergence of the learning process due to a proportional increase in the learning 

rate  401,0 batchN  leads to the development of instability in the learning process and does not give 

the desired results.  

Thus, a numerical experiment shows that when training a transport system model based on a neural 

network, the batch training mode has slow convergence at a given training rate proportional to the 

number of elements batchN  in the batch.  

Figure 9 and Figure 10 show the results of predicting the output flow )( 717  , and )( 818  ,  

depending on the number of training epochs. The prediction quality results are determined by the MSE  

(6), which corresponds to 0,617; 0,197 and 0,045 after one, twelve, and one hundred and eighty epochs 

of learning. The sequential neural network training mode demonstrates satisfactory convergence of the 

neural network training process and high training accuracy. 

4.2. Analysis of the choice of the initial value of the node participating in the 

formation of the bias 

The value of the hidden node is determined by expressions (9) and (10). The value of the node 

participating in the formation of the bias value, as a rule, is taken equal to one: 10 nly  (10). This 

approach is common, despite the fact that the choice of value nly 0  can have a significant impact on the 

convergence of the neural network learning process.  

The values of the nodes of the neural network are calculated during the forward pass based on the 

known values of the weight coefficients (9). 

In the reverse pass, the values of the weight coefficients are calculated taking into account the values 

of the nodes of the neural network (11)-(19). A self-consistent change in the weight coefficients and 

values of the neural network nodes is observed. If the learning process is convergent, then the values of 

the neural network nodes and the values of the weight coefficients converge to their steady-state values. 

For hidden layers, the node value nly 0  is constant, not formed as a result of a direct pass of the neural 

network. 
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Figure 8: Equipotential lines    6,0;5,0;2,0;1,0;05,0)(lg, 10  epochNfMSE batch  

 

Figure 9: Predicting the value of the output flow )( 7171  ,y   using sequential learning mode. 1: 

trainable set; 2: after one learning epoch; 3: after twelve epochs of learning; 4: after one hundred 

and eighty eras of learning 

 

Figure 10: Predicting the value of the output flow )( 8182  ,y   using sequential learning mode. 1: 

trainable set; 2: after one learning epoch; 3: after twelve epochs of learning; 4: after one hundred and 

eighty eras of learning 
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However, the node value nly 0  participates in the process of forming the value of other nodes during 

the forward pass and in the process of forming the values of the weight coefficients during the reverse 

pass. If, as a result of training, the values of the hidden nodes nvl l
y

1)1(   are small 

10 nly  1
1)1( 
 nvl l

y  01 lv   

then with the same order of values of the weight coefficients
10 


lll vlvlv ww  the calculated value of the 

node is determined by the bias value 

00)1(0

0

)1(

1

1

11 ll

l

l

llll lvnllv

V

v

nvlvlvnlv wywyw  
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





  (21) 

The experiments carried out for the analyzed neural network with the architecture 12-15-2 (3) 
confirm the influence of the value of the node participating in the formation of the bias value on the 

learning process of the neural network in the transport conveyor model. The analysis was carried out 

for a neural network with logistic activation function and linear activation function. The analysis results 

are presented in Table 1. Figures 11 and 12 demonstrate the convergence of the learning process for a 
neural network with logistic activation function and linear activation function with the same architecture 

of the 12-15-2 neural network (3). In these figures, the solid line represents the learning process for 

positive values nly 0)1(   and the dashed line for negative values nly 0)1(  . It should be noted that the 

dashed line  nlyMSE 0)1(  , 00)1(  nly  with the logistic activation function passes in the vicinity of 

the solid line  nlyMSE 0)1(  , 00)1(  nly . The dependence  nlyMSE 0)1(   for the logistic activation 

function is shown in Figure 13. 

Table 1 
Influence of the bias value of a node on the convergence of the learning process of a neural network 
(speed learning=0,01; number of epochs=104) 

Bias 

(hidden 

layer) 

nly 0)1(   

Logistic Activation function Linear Activation function       

MSE Number of epochs MSE Number of epochs MSE Number of epochs 

-10,0 0,017074 104 0,398227 4 0,516921 104 

-5,0 0,009092 104 0,515637 771 0,516921 104 

-2,0 0,008957 104 0,494928 567 0,496836 104 

-1,0 0,010552 104 0,490902 729 0,492584 104 

0,0 0,012328 104 0,498925 519 0,500923 104 

1,0 0,011143 104 0,490904 731 0,492578 104 

2,0 0,011278 104 0,494926 592 0,496836 104 

5,0 0,008333 104 0,515766 757 0,511629 104 

10,0 0,015051 104 0,397910 4 0,511629 104 

For the linear activation function, the solid and dashed lines coincide and are visually 

indistinguishable in Figure 12. The dependence  nlyMSE 0)1(   for the logistic activation function is 

shown in Figure 14. For a nonlinear activation function, with an increase in the number of learning 

epochs, the sensitivity of the quality of the learning process to the bias-node value decreases (Figure 

13). For a linear function, the decrease in sensitivity is much slower (Figure 14). For two cases, the 

symmetry of the function  nlyMSE 0)1(   with respect to the zero value is observed. The minimum 

value of the function  nlyMSE 0)1(   is reached at a point different from the value 00)1(  nly . This 

indicates that the presence of a nonzero bias improves the accuracy of predicting the output material 

flow. 
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Figure 21: MSE  value depending on the number of learning epochs for the bias value 

 10;5;2;1;00)1(  nly  (logistic activation function and 12-15-2 neural network architecture) 

 

 
Figure 12: MSE  value depending on the number of learning epochs for the bias value 

 10;5;2;1;00)1(  nly . (linear activation function and 12-15-2 neural network architecture)  

 
Figure 13: The dependence  nlyMSE 0)1(   for lg10(epoch)= 4;3;2;1  (logistic activation function and 

12-15-2 neural network architecture) 

4.3. Conclusion 

In this work, we analyzed the choice of the neural network training mode, which is used in the 

transport conveyor model. For comparative analysis, a neural network with architecture 12-15-2 was 
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used. The experiment was carried out for a neural network with a logistic activation function and a 
linear activation function of its nodes. 

 

Figure 14: The dependence  nlyMSE 0)1(   for lg10(epoch)= 4;3;2;1  (linear activation function and 

12-15-2 neural network architecture) 
 

The learning rate for the analyzed batches is chosen proportional to the size of the training batch. 
For example, for a batch learning mode of size eight, the learning rate is chosen to be eight times faster 

than the sequential learning mode. With the same number of epochs, a linear increase in the MSE 

value is observed depending on the size of the training batch. Thus, at the same learning rate, there is 

a quadratic dependence of the MSE value on the size of the training batch for the selected neural 
network architecture. Switching to batch training mode significantly reduces the efficiency of neural 

network training. It should be noted that there is a quasi-linear relationship between the size of the 

training batch and the lg10(epoch), value, which characterizes the number of training epochs. In 
addition, attention is paid to the choice of the value of the node of the hidden layer participating in the 

formation of the bias. Numerical experiments demonstrate the need to use bias to improve the accuracy 

of predicting the output flow parameters of the transport system.  
Ensuring the convergence of the learning process is one of the important problems in the design of 

transport conveyor models based on a neural network. The use of the batch mode guarantees the 

convergence of the algorithm to a local minimum under fairly simple conditions, which explains its 

use in proving the convergence of the back propagation algorithm. Convergence is increased by 
parallelizing the learning process. However, as shown in this work, the use of the batch learning mode 

is ineffective when constructing models for predicting the output flow of material in the multi-section 

transport conveyor. This is explained by the fact that the multi-section transport conveyor is a complex 
dynamic distributed system, at the input of which material flow arrives, the value of which is of a 

stochastic nature. The superposition of flows of individual sections with a transport delay leads to the 

presence of characteristic peaks in the value of the output flow. Under such conditions, the use of the 

batch mode of training the neural network leads to a strong smoothing of the peaks, decreasing the 
value in proportion to the number of examples in the batch, and as a consequence, significantly 

increases the MSE value, reducing the quality of the prediction of the values of the output flow 

parameters of the transport system. The peculiarity of the multi-section transport system associated 

with the presence of peak values as a result of the superposition of material flows of individual sections 

limits the possibility of using the batch mode of training the neural network when constructing models 
of the transport conveyor. The same reason can be accepted as an explanation for the low efficiency 

of the use of a linear activation function in the formation of a neural network. The scientific novelty 

of the results was obtained in the fact that for the first time the problem of increasing the efficiency of 
the learning process of a neural network used to build a model of a multi-section transport conveyor 

was posed. An estimate is given for the decrease in the convergence rate of the neural network learning 

process depending on the increase in the number of examples in the training batch. Recommendations 

on the choice of the activation function and bias value for the neural network nodes, as well as the 
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neural network training mode, are presented. These recommendations are valid for multi-section 
transport systems with ten or more sections. With a small number of sections, the peaks in the output 

stream are not so pronounced, which allows you to select both sequential learning mode and batch 

learning mode. 

The prospect of further research is the analysis of the choice of the training mode for neural network 
used in transport conveyor models, depending on its architecture. Of particular interest is the case of 

using multilayer neural network in models of transport systems. Also, an interesting direction for 

future research is the influence of the type of activation function used in the neural network on the 
quality of predicting the flow parameters of the transport system. 
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