УДК 621.1.016: 579

Болдырев С.А.

МЕТОДЫ ЭНЕРГОСБЕРЕЖЕНИЯ В САХАРНОЙ ПРОМЫШЛЕННОСТИ (ОБЗОР)

Национальный технический университет «Харьковский политехнический институт»

Основные проблемы, которые нужно решать человечеству в настоящее время и в будущем – удовлетворение потребностей в пище и энергии, а также создание комфортных условий обитания в окружающей среде. Производство пищи требует значительного потребления энергии получаемого за счет природных ресурсов – главным образом углеводородного сырья. Статистические данные указывают на весьма ощутимое энергопотребление в пищевой промышленности [1]. Постоянный рост народонаселения Земли и обеспечение его питанием обуславливает ежегодный рост энергопотребления, а это приводит к резкому ухудшению состояния окружающей среды ввиду увеличения выбросов CO_2 , NO_x , SO_x , и других промышленных выбросов. Таким образом, задача энергосбережения в промышленности является общей и жизненно важной проблемой для всех государств и особенно для Украины, поскольку здесь соотношение инвестиций в энергосбережение и затрат, необходимых для выработки такого же количества энергии, равно 1:10 [2].

Для нормального организма человека, который не выполняет большое количество физической работы, необходимо следующее суточное количество основных питательных веществ: белков 102 г, жиров 97 г и углеводов 410 г [3]. В суточном рационе человека суммарная калорийность углеводов составляет все же около 55 % [4].

В самом начале XIX века в Европе создались условия, которые заставили искать новые источники для получения сахаристых веществ помимо сахарного тростника. Подбором наиболее богатого сахаром сорта свеклы, а также разработкой практического получения из нее сахара в конце XVIII в. одновременно занимались: Я.С. Есипов в России и Ахард в Германии.

Методы свеклосахарного производства, разработанные Есиповым и Ахардом, были совершенно различны. Есипов применил метод очистки выжатого сока свеклы известью, что оказалось вполне перспективным и применяется повсюду до настоящего времени (этот метод предложен был также русским академиком Т.Е Ловицем). Ахард очищал сок не известью, а серной кислотой, что позволяло коагулировать белки и красящие вещества свеклы, но одновременно инвертировало часть сахарозы, снижая выход кристаллического сахара. Этот метод не нашел широкого практического применения. Одновременно в 1802 г. появились и начали работать первые два свеклосахарных завода. Один из них был построен в России, в Тульской губернии, а другой в Германии [5].

Во время развития сахарного производства постоянно совершенствовалось оборудования и различные стадии процесса. Целью было как улучшение качества продукта, так и уменьшение эксплуатационных, энергетических затрат, потребления воды, а в последнее время, и уменьшения выбросов CO_2 в атмосферу. Проблема снижения потребления энергии особенно остро стала в 70е годы прошлого века, во время энергетического кризиса, а в Украине эта проблема обострилась после распада Советского Сою-

за. Работы по модернизации сахарных производств являются довольно актуальными и ведутся учеными различных стран.

Производство сахара из сахарной свеклы является сложным процессом, который состоит из тесно взаимосвязанных тепловых процессов, таких, как нагревание, много-корпусная выпарка, варка, кристаллизация и сушка, а также таких процессов, как отбелка, дефекация, сатурация, фильтрация, центрифугирование и т.д. Тепловая система сахарного завода представляет собой очень сложный комплекс, состоящий из много корпусной выпарной установки, а также системы теплообменников, греющим агентом в которых является вторичный пар из корпусов выпарной установки.

Многие ученые исследуют выпарную станцию, которая потребляет наибольшее количество энергии при производстве. Так в [8] рассматривается использование выпарного аппарата с нисходящим потоком жидкости. Другие авторы рассматривают различные факторы, влияющие на работу выпарной установки и ее регулирование и предлагают схему реконструкции с ее автоматизацией и удвоением мощности [9]. Автоматическое управление пленочным выпарным аппаратом также предлагается в [10].

Оценивать процесс выпаривания можно исходя из обобщенной функции Харингтона, в [11] приводится алгоритм решения этой задачи и рассматривается пример применения. Одним из наиболее эффективных методов снижения потребления энергии при выпаривании в сахарной промышленности является тепловая интеграция выпарной установки. В [12] приведена одна из методик, базирующаяся на анализе работы выпарной станции с помощью большой составной кривой. Метод интеграции выпарной станции также рассматривается в [13] и приводится пример решения задачи тепловой интеграции выпарной установки.

Помимо процесса выпаривания при производстве сахара изучение и модернизация других стадий технологического процесса ведутся различными исследователями с целью уменьшения энергозатрат на производство продукции. Результаты таких исследований для различных технологических стадий изложено в [14] и [15]. Приведена классификация и очередность проведения энергосберегающих мероприятий. Согласно которой наибольший эффект (примерно 5 % экономии энергии) имеет повышение концентрации сахарного сиропа с 55 до 65 %, а также ликвидация водяных и соковых раскачек и повышения плотности утфеля 2^й кристаллизации (около 3,5 % экономии энергии) [14].

Эксплуатационные факторы при работе продуктового отделения и температура откачки диффузионной также имеют влияние на потребление тепловой энергии [16]. Расчет температуры откачки при работе диффузионной установки приводится в [17].

В европейских странах большое внимание уделяется использованию технологии охлаждающей кристаллизации и компримированию экстрапаров выпарной станции. Проф. Урбанец и другие авторы в своих работах показывают преимущества охлаждающей кристаллизации перед ранее используемой традиционной технологией [18], [19], [20]. Энергопотребление процесса переработки сахарной свеклы при использовании охлаждающей кристаллизации уменьшается. Использование дополнительной компрессии и компоновки выпарной станции также энергоэффективна [18–20, 31, 32]. Использование охлаждающей кристаллизации в сочетании с микрофильтрацией сырого сока сахарной свеклы также снижает энергопотребление и улучшает качество готового продукта [21].

Все большее внимание в последнее время уделяется снижению влияния на окружающую среду промышленных предприятий. Для сахарных производств это, в первую очередь, оптимизации водных циклов предприятия и снижению вредных вы-

бросов. А снижение вредных выбросов напрямую связано со снижением энергопотребления на сахарных заводах. В этой области в последнее время появилось большое количество работ, в которых используются методы водяного пинча для уменьшения водопотребления предприятия [22], [23]. Эти методы основаны на оптимизации последовательности стадий водопотребления.

С развитием компьютерных технологий все больше появилось программных продуктов для моделирования и оптимизации тех или иных технологических процессов. Как методы, которые позволяют снизить эксплуатационные и энергетические затраты при производстве сахара, появились различные методы моделирования и оптимизации сахарных производств. С их помощью оптимизируют каждую стадию сахарного производства, предприятие в целом и режимы его работы [25], [26]. Эти методы требуют хорошего уровня автоматизации процесса, что в свое время значительно повышает капитальные затраты при реконструкции [27].

При проектировании оптимальных тепловых систем необходимо находить решение из огромного числа возможных вариантов. В [33], например, указывается, что в задаче с пятью холодными и горячими технологическими потоками число вариантов схем равно $3\cdot 10^6$, поэтому важным этапом решения является формулирование критерия оптимизации (целевой функции).

Традиционные методы проектирования не позволяют оценить приведенные затраты до создания технологической схемы установки или предприятия. Применение методов математической оптимизации приводит к необходимости решения задач большой размерности, осложнённых возможностью появления локальных методов, а многие методы их решения не дают однозначного алгоритма [34].

Для эффективного синтеза оптимальных технологических схем проф. Б. Линхоффом с сотрудниками университета Манчестерского института науки и технологии развит метод пинч-анализа [35], основанный на термодинамическом анализе составных кривых технологических потоков. Эти методы интеграции в настоящее время выделились в отдельное научное направление. Хотя при обследовании британских сахарных заводов было показано, что эти методы не дают значительной экономии энергии по сравнению с традиционными методиками [28], [29]. Но развитие методов интеграции процессов в 90х годах прошлого века позволило расширить область их применения и использовать в сахарной промышленности [32].

Используя методы пинч-анализа, было проведено обследование теплоэнергетических систем ряда сахарных заводов на северо-востоке Украины. Всего в этом регионе насчитывается примерно 27 сахарных заводов общей производительностью 43920 т сахарной свеклы в сутки [36–41].

В результате определено, что на переработку 100 кг свеклы потребляется 60–70 кг ретурного пара [36–41], в то время как на сахарных заводах Центральной и Западной Европы, работающих по аналогичной технологии, потребляется ~ 40 кг ретурного пара на 100 кг свеклы [31], а европейские производства использующие пластинчатые выпарные аппараты потребляют 25кг пара на 100 кг свеклы [42], что говорит о существовании потенциала для энергосбережения.

Применение методов интеграции позволит снизить энергопотребление на украинских сахарных заводах на 20–45 % от существующего. Если при этом использовать также современные пластинчатые теплообменники и пластинчатые выпарные аппараты, то энергопотребление можно довести до среднеевропейского.

Литература

- 1. Смит Р., Клемеш Й., Товажнянский Л.Л., Капустенко П.А., Ульев Л.М. Основы интеграции тепловых процессов. Харьков: ХГПУ. 2000. С. 457.
- 2. Victorov V.K. Economic estimation of availability variants for heat exchange systems // Proceedings of International Conference "Mathematical Methods in Chemistry and Chemical Engineering", MMCh 10. Tula. 1996. P. 60.
 - 3. Меншиков Ф.К. Диетотерапия. Ч. 1., "Медицина", 1965.
 - 4. Yogiro Tsuzuki, Inzo Yomazaki. ISJ, 54, 1952.
 - Силин М.П. Технология сахара. 1967. с. 625
 - 6. Lippman E.O. Geschichte des Zuckers, Berlin, 1929.
 - 7. Бенин Г.С. Сахарная промышленность, 1964, №8, 74.
- 8. Тёбе П. выпарной аппарат с нисходящим потоком выпариваемой жидкости в сахарной промышленности. -1993.-c.85-88.
- 9. Ладанок А.П., Кравчук А.Ф., Куриленко О.Д. Реконструкция теплового комплекса: основные параметры и задачи управления процессом. // Цукор Украины. №4–5 (34), 2003, с. 26–32.
- 10. Чагаров А.Н., Филоненко В.Н., Прядко Н.А., Ладанок А.П. Способ автоматического управления пленочным выпарным аппаратом. Опубл. 1990, Бюл. № 48.
- 11. Кравчук А.Ф., Еременко Б.А. Технико-экономическая оценка работы выпарной установки сахарного завода. // Цукор Украини. № 4–5 (34), 2003, с. 33–35.
- 12. D. L. Westphalen, M. Franco, M. R. W. Macie. Strategies for process integration of evaporation systems. // 14th International Congress of Chemical and Process Engineering, CHISA'2000, Prahga, 2000, Summaries Vol. 4. Process System Engineering. Prague. 2000. P. 216. (Paper No. P7.77).
- 13. F. Xiao, R. Smith. Case studies of heat integration of evaporation system. // Chinese Journal of Chemical Engineering. No 9, pp. 224–227, 2001.
- 14. Основні напрямки енергозбереження в цукровій промисловості. // Цукор України. №1 (31), 2003, с. 17–19.
- 15. Анализ тепло потребления и энергосбережения на сахарных заводах Украины // В сб. "Украина: Энергосбережение в пищевой промышленности" (Программа Таcis). 79–89.
- 16. Христенко В.И., Штангеев К.О., Мищук Р.Ц. Влияние эксплуатационных факторов на теплопотребление в продуктовом отделении. // Сахар. − 2000, №3, с. 15–17.
- 17. Христинко В.І., Штангеєв К.О. Розрахунок температури відкачки дифузійної установки коритного типу. // Цукор України, №2 (32), 2003, с. 20–21.
- 18. G. Vaccari, E. Tamburini, G. Sgualdino, M. Kearney1, V. Kochergin1, D. Costesso. Cooling crystallization applied to the "extract" of a chromatographic separation process (SMB) of beet raw juice. // 14th International Congress of Chemical and Process Engineering, CHISA'2000, Prahga, 2000, Summaries Vol. 4. Process System Engineering. Prague. 2000. P. 29. (Paper No. H1.4).
- 19. M. Grabowski, K. Urbaniec. Minimum energy consumption in sugar production by cooling crystallisation of concentrated raw juice. // 14th International Congress of Chemical and Process Engineering, CHISA'2000, Prahga, 2000, Summaries Vol. 4. Process System Engineering. Prague. 2000. P. 30. (Paper No. H1.5).
- 20. M. Grabowski, J. Klemes, K. Urbaniec, G. Vaccari, X.X. Zhu. Minimum energy consumption in sugar production by cooling crystallisation of concentrated raw juice. // Applied Thermal Engineering No 21, pp. 1319–1329, 2001.

- 21. G. Vaccari, P. Wawro, E. Tamburini, G. Sgualdino and T. Bernardi. Comparison between cooling crystallization of microfiltered raw juice and traditional thick juice. // Proceedings of 4th Conference Process Integration, Modelling and Optimisation for energy Saving and Pollution Reduction (PRESS'01), Florence 20–23 May, 2001. P. 167–172.
- 22. K. Urbaniec and J. Wernik Minimisation of water use in a novel sugar manufacturing process // 15th International Congress of Chemical and Process Engineering, CHI-SA'2002, Prahga, 2002, Summaries Vol. 4. System Engineering. Prague. 2002. P. 91. (Paper No. H4.1).
- 23. M. Grabowski, J. Klemes, K. Urbaniec, G. Vaccari and J. Vernik. Characteristics of energy and water use in a novel sugar manufacturing process. // Proceedings of 4th Conference Process Integration, Modelling and Optimisation for energy Saving and Pollution Reduction (PRESS'01), Florence 20–23 May, 2001. P. 407–410.
- 24. G. Vaccari, E. Tamburini, G. Sgualdino, K. Urbaniec1, J. Klemes Overview of the environmental problems in beet sugar processing: possible solutions. // 15th International Congress of Chemical and Process Engineering, CHISA'2002, Prahga, 2002, Summaries Vol. 4. System Engineering. Prague. 2002. P. 94–95. (Paper No. H4.3).
- 25. M. Ribas Garcia, R. Hurtado Vargas, R. Diaz, C. De Armas Casanova, L. Rostgaard Beltran Analysis of sugar production flowsheets. Part I: Mathematical modelling. // 15th International Congress of Chemical and Process Engineering, CHISA'2002, Prahga, 2002, Summaries Vol. 4. System Engineering. Prague. 2002. P. 232–233. (Paper No. P5.56).
- 26. R. Hurtado Vargas, M. Ribas Garcia, R. Diaz, C. De Armas Casanova, L. Rostgaard Beltran Analysis of sugar production flowsheets. Part II: Software tool and case study. // 15th International Congress of Chemical and Process Engineering, CHISA'2002, Prahga, 2002, Summaries Vol. 4. System Engineering. Prague. 2002. P. 243–244. (Paper No. P5.63).
- 27. Raúl Sabadí Díaz, Rafael Hurtado Vargas, Mauricio Ribas García, Carlos de Armas Casanova and Leopoldo Rostgaard Beltran. Analysis of sugar production flowsheets. Part III: Balances at equipment and operation level. // 15th International Congress of Chemical and Process Engineering, CHISA'2002, Prahga, 2002, Summaries Vol. 4. System Engineering. Prague. 2002. P. 92. (Paper No. H4.2).
- 28. Linnhoff B., Polley G.T., Sahdev V. General process improvements through pinch technology. Chem. Eng. Progress (May), 1988, pp. 51–58.
- 29. Twaite N.R., Warnes A.J.N. Technical aspects of reducing production costs. Zuckerind. 114, 1989, pp. 889–897.
- 30. Сухин В.П. Магнитогидродинамический резонанс метод интенсификации технологических процессов и энергоресурсосбережения в производстве сахара. // №2 (32), 2003, с. 22–23.
- 31. Урбанец К., Залевски П., Клемеш Й. Проект реконструкции для польских сахарных заводов с применением методов интеграции процессов и современного теплообменного оборудования// Інтегровані технології та енергозбереження. 2001. №1. С. 3–12.
- 32. Klemes J., Kimenov G., Nenov N. Application of pinch technology in food and drink industry. CHISA/PRES'98. Prague, 1998, paper No. 136.
- 33. Клемеш И., Птачник Р. Синтез оптимальной структуры систем теплообмена // Теор. основы хим. технол. 1987. Т. 21. № 4. С. 488–498.
- 34. Linnhoff B., Flower J.R. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal network // AIChE J. 1978. Vol.24. No. 4. P. 633–642
 - 35. Smith R. Chemical Process Design. New York. McGraw-Hill, Inc. 1995. P. 460.

- 36. Товажнянский Л.Л., Капустенко П.А., Ульев Л.М., Болдырев С.А. Экономически оптимальная тепловая интеграция на сахарных заводах // Междунар. Научнларакт. конф. "Логистика и экономика ресурсосбережения и энергосбережения в промышленности" (ЛЭРЭП 2002), 28–31 Октября. 2002. Москва. Статья С3.2–1.1.4.
- 37. Товажнянский Л.Л., Капустенко П.А., Ульев Л.М., Перевертайленко А.Ю., Болдырев С.А. Прогноз снижения выбросов СО₂ при улучшении тепловой интеграции на сахарных заводах Северо-Восточной Украины // IV Всеукраінська науковометодична конференція з міжнородною участю "Екологія інженерія. Стан, наслідки, шляхи створення екологічно чистих технологій", 22–25 жовтня 2002 р. Збірка доповідей. Дніпродзержинськ. 2002. С. 16–18.
- 38. Товажнянский Л.Л., Капустенко П.А., Ульев Л.М., Болдырев С.А. Тепловая интеграция и энергосбережение в сахарной промышленности // Вестник НТУ "ХПИ". 2002. Вып. 9. Т. 1. Харьков. НТУ "ХПИ". С. 94–105.
- 39. Товажнянский Л.Л., Капустенко П.А., Ульев Л.М., Болдырев С.А. Улучшение тепловой интеграции на сахарных заводах // Інтегровані технології та енергозбереження. 2002, № 2. С. 11–16.
- 40. Tovazhnyansky L.L., Kapustenko P.A., Ulyev L.M., Boldyryev S.A. Heat Integration Improvement for Eastern European Countries Sugar-Plant // 15th International Congress of Chemical and Process Engineering, CHISA'2002, Prahga, 2002, Summaries Vol. 4. System Engineering. Prague. 2002. P. 251–252. (Paper No. P5.69.)
- 41. Energy saving and emission reduction at the sugar-plant with take into acount of condensate heat of return steam in process integration L.L. Tovazhnyansky, P.O. Kapustenko, L.M. Ulyev, 1A. Yu. Perevertylenko, 1S. A. Boldyryev, 1A. S. Demirskiy 16th International Congress of Chemical and Process Engineering, CHISA'2004, Prague, 2004, Summaries Vol. 4. System Engineering. Praha. 2004. P. 251–251. (Paper No. P5. 69. P. 19.).
- 42. Licha H., Valentin P., Wersel M., Witte G. The Plate Evaporator A New Methodic Evaporation Technology // Zuckering. 1989. Vol. 114. No 10. S. 785–798.

УДК 621.1.016: 579

Болдирев С.О.

МЕТОДИ ЕНЕРГОЗБЕРЕЖЕННЯ В ЦУКРОВІЙ ПРОМИСЛОВОСТІ (ОГЛЯД)

У роботі зроблено огляд методів енергозбереження у цукровій промисловості. Визначаються останні тенденції модернізації та реконструкції цукрових виробництв. Розглянуто споживання енергії на переробку цукрових буряків в розвинутих країнах і порівнюється з цим показником в Україні. Визначено енергозберігаючий потенціал для українських цукрових заводів з використанням методів інтеграції процесів та сучасного енергозберігаючого обладнання.