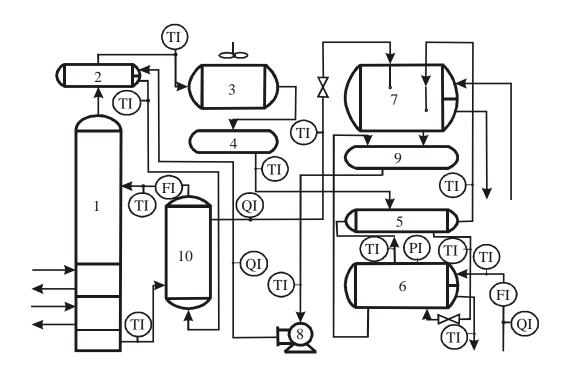
621.57:661.53

[1].

```
),
                                                               ( .
                                                                              -1360.
The research results of ammonia synthesis aggregate absorption refrigerator are given. The quantity de-
pendence for the energetic effectiveness of absorption refrigerator is determined. The main directions of
the further researches elaborations in the field of the power consumption decrease of ammonia synthesis
aggregate are established.
    -1360
(
       ),
7,1
                                    )
                                                         125 ° 137 °.
                    /.NH<sub>3</sub>
                                     30 – 40 %
       38,55
```

	6,28	}									-
	()				4,87	,				
		40 %			4	٠	•		,		-
	,					,					
			•								-
0 0											
			,	-				,			-
			,					TDC-3	000,		
	-				-	,		•	,	,	-
	[2],						. 1			_	-
	,				•		. 1	(_
		20-		,						. 1	2.
	,		•								-
	, (/ [3].	(),				q_{0} (/)			

D(/)


$$q_0 = i_8 - i_6; (1)$$

$$i_8 = i_K - (1 - \langle 5 \rangle / K;$$
 (2)

$$D = /q_0, (3)$$

 $0, t_8 < = 1;$ i –

[4].

. 1.

; 3 – 1 –

; 2 – ; 6 –

; 5 – ; 9 – ; 8 – ; 10 – 7 –

 $G_r(/)$

[5, 6]:

$$f = G_r/D; (4)$$

$$f = (\langle 5 - \langle a \rangle / (\langle r - \langle a \rangle);$$
 (5)

$$G_r = V_{r\cdots r}; \tag{6}$$

$$..._r = 999 - 0.42t_1 - (360 + 1.4t_1) <_r. \tag{7}$$

f, (4) (5), 3 %

.

1

					_i , %				, 0			
	V, 3/	•						V_{r} 3/	1	t	t, 0	
1*	316626	22,4	55,7	20	8	7	9,3	110	19	5	30	
2*	316233	24,0	56,2	19,5	7	6,8	9,8	112	17	3	25	
3	314433	22,7	56,8	17,6	8,8	6,8	10,0	125	18	- 6	10	
4	316234	23,0	56,0	18,9	8,3	6,9	9,9	108	23	- 1	20	
5	306540	22,3	55,6	18,9	7,8	6,9	10,4	120	17	- 6	26	
6	308600	23,5	57,6	17,7	8,4	8,0	8,3	128	16	- 8	- 5	
7	308600	23,5	57,6	17,7	8,4	8,0	8,3	128	16	- 8	- 4	
* _							-				•	

. ,

3 %,

 $q_{R},$ - $q_{h},$ $q_{a},$ q_{K} q_{K}

$$q_R = f(i_{41} - i_4); (8)$$

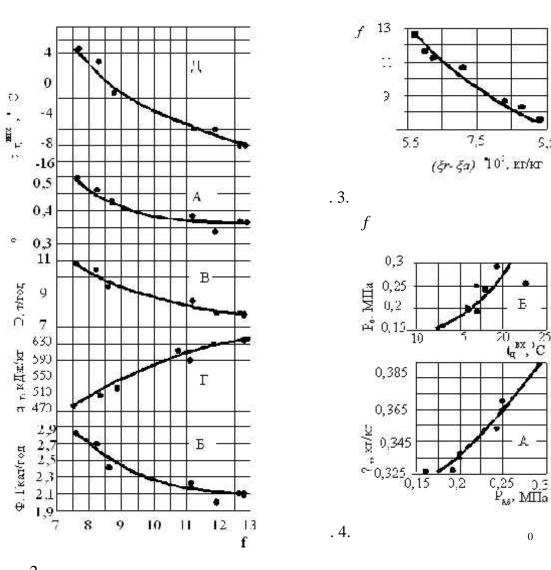
$$q_h = i_5 - i_2 + f(i_2 - i_1) + q_R; (9)$$

$$q_a = i_{81} - i_{31} + f(i_{31} - i_4); (10)$$

$$i_{8I} = i_8 + 0.5(t_{8I} - t_8); (11)$$

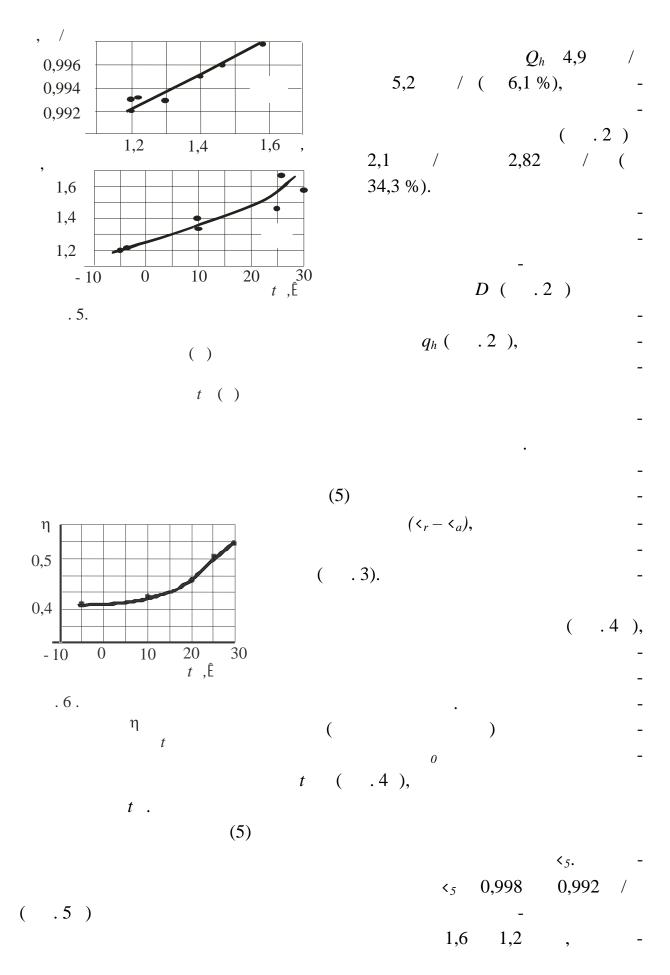
$$q_K = i_5 - i_6;$$
 (12)

$$y = q_0/q_h. \tag{13}$$


			, 0									,		
				t_{8I}	t_2	t_4	\mathfrak{t}_{4I}	<i>t</i> ₅		t_6				
	•	0,	t_I								t_8			_
												,	/ , ,	(<, - <),
									\mathfrak{t}_{3I}			, ,	~	(<,
1*	15,8	2,9	106	13	122	35	43	50	49	35	- 2	0,396	0,304	0,092
2*	14,6	2,5	105	11	122	35	42	55	49	31	- 5	0,365	0,278	0,087
3	14	2,4	101	3	120	38	43	54	55	15	- 12	0,354	0,291	0,063
4	12	2,5	102	7	116	35	45	53	50	28	- 8	0,371	0,288	0,083
5	16,9	1,9	108	16	125	33	43	55	50	37	- 13	0,353	0,295	0,058
6	12	2	99	2	118	38	43	49	57	10	- 15	0,338	0,281	0,057
7	12,2	2	99	2	118	38	43	49	57	10	- 15	0,335	0,278	0,057
* _								-				•		

(8 - 13) i_i [6], [4]

> . 2 – 6 . 1 2,


> > 5,5

 $\langle r - \langle a \rangle$

. 2. () <_r

(.2) 28,2 % y) (*f* 13 7,66


```
30 - 6^{0} ( .5 ).
              t_2
                               .3 - 5,
                                    ( . 6).
      30^{0}
  - 6
                                 f 12,7 7,6.
                                          t
                                              0^{0}
  -8 	 5^{0} 	 ( 	 .2 ),
                                                           [7].
             : 1.
                                .//
                                      . – .: , 1958. – . 7.
- 115 . 3.
                                                         . //
          . – 1979. –       2 –     . 23 – 26. 4.
                                    . .,
                                              , 1960. – 238 .
     . – 1966. – 356 . 6.
         . //
                                          . - 1978. - 8. - .18 - 19.
        . .,
                                            . //
         . – 1986. – . . 80. – . . 113 – 117.
```

2.

5.

7.

05.09.07