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Abstract. Based on the continuum creep-damage mechanics and the finite element analysis
the long-term strength in thin-walled structures is estimated using the solid and the shell type
finite elements available in ANSYS code. For this purpose the material model with a scalar
damage parameter is incorporated into the ANSYS code with the help of a user defined material
subroutine. The results based on the first order shear deformation beam equations are compared
with the results of the finite element plane stress simulations. It is demonstrated that the shear
correction factor and the distribution function of the transverse shear stress have to be modi-
fied within time-step calculations. For a rectangular plate in bending finite element analysis is
performed based on the shell and the solid type finite elements. The differences in the edge-zone
stress redistributions in the shell and the solid type models as well as the influence of boundary
layer solutions on the long-term predictions are illustrated.
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1 Introduction

Continuum damage mechanics (CDM) has become an efficient tool for the analysis of long-term
behaviour in structures at elevated temperatures [1]. Based on a suitable constitutive model
with internal state variables characterising hardening and damage processes the deformation,
the stress and the damage fields in a structure can be predicted by solving nonlinear initial-
boundary value problems. Applying the finite element method two possibilities are usually
available for the analysis of thin-walled structures. The first one is the application of three-
dimensional equations and solid type finite elements. The second one is the use of the models
of beams, plates and shells, which are based on the through-the-thickness approximations of
three-dimensional displacement and stress fields and corresponding finite element implemen-
tations. The solid based concept can be considered as general, particularly in CDM analysis
of structures with stress concentrations or weldments [2]. However, in the case of thin-walled
structures great effort is necessary for numerical treatment of the three-dimensional equations
and the solution may lead to conditioning problems. With the progress in the material science
and continuum mechanics various new material models are proposed including physically mo-
tivated state variables and considering stress state dependences. On the other hand the available
models of beams, plates and shells are based on simplified cross-section assumptions and have
been originally developed within the theory of linear elasticity (e.g. [3, 4]). A number of inves-
tigations show that the classical Kirchhoff-Love and first order shear deformation shell theories
can accurately predict the creep deformation and creep buckling of shells considering material
models of primary and secondary creep [5, 6, 7]. The introduction of damage requires to take
into account non-classical effects in the material behaviour, e.g. different tertiary creep rates
by tension and compression or anisotropic behaviour induced by damage. As demonstrated in
[8] the effect of different damage rates in tension and compression induces non-symmetrical
through-the-thickness damage distributions in a plate in bending, whereas the analysis has been
based on the first order shear deformation theory. In [9, 10] the creep-damage analysis for a
thin-walled pipe bend is performed using the shell and the solid type finite elements. It is shown
that the shell and the solid models lead to different life-time estimations if the damage evolution
induces a non-symmetrical through-the-thickness behaviour. Furthermore, different edge-zone
stress redistributions may result as a consequence of the creep-damage process.

The aim of this paper is to discuss the numerical creep-damage predictions in simple structures:
a thin-walled beam and a rectangular plate in bending. Particularly we examine the first order
shear deformation shell theory, which is mostly used in the finite element codes. Firstly we
derive the beam equations considering the effect of creep deformation and damage evolution
demonstrating the possibilities and limitations of the cross-section assumptions. Based on the
numerical study of a beam we demonstrate that the shear correction factor and the distribution
function of the transverse shear stress have to be modified within time-step calculations. Sec-
ondly we perform the finite element analysis for a rectangular plate in bending based on the
shell and the solid type finite elements. The differences in the boundary layer solutions based
on the shell and the solid type models as well as their influence on the long-term predictions
will be discussed in detail. Finally we discuss the requirements for the through-the-thickness
approximations in refined models for beams, plates and shells.
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2 Material Behaviour and Consequences for Structural Mechanics
Models

Creep behaviour of polycrystalline metals and alloys is a complex phenomenon accompanied by
different microstructural changes. It is known from material science that for moderate stresses
(below the yield limit) and elevated temperatures above 0.4Tm with Tm as the melting point, the
steady state creep process is controlled by the climb plus glide dislocation mechanism [11, 12].
The strain rate can be predicted using the power law stress function. For multi-axial stress states
the deviatoric stress components and the von Mises equivalent stress are responsible for the de-
formation process. In addition to irreversible strains, material deterioration processes occur and
lead to accelerated creep in the tertiary stage and to the final fracture. For polycrystalline mate-
rials the tertiary creep is accompanied by nucleation and growth of cavities on grain boundaries.
The initially existing micro-defects have negligible influence on the strain rate. As their number
and size increase with time, they weaken the material providing the decrease in the load-bearing
cross section. The nucleation kinetics can be related to the local grain boundary deformation as
well as to the stress state characterised by the first positive principal stress (maximum tensile
stress) and the von Mises equivalent stress [13]. The coalescence of cavities lead to propaga-
tion of oriented microcracks and to the final fracture. Further the damage evolution induces
anisotropic creep response. The cavities and microcracks nucleate on grain boundaries having
different orientations. The significant influence of the damage anisotropy can be observed on
the last stage before the creep rupture.

Let us introduce the conventional creep-damage material model of Kachanov-Rabotnov-
Hayhurst [14]

ε̇cr
ij
� 3

2
a
�

σvM

1 � ω � n sij

σvM
, ω̇ � b � ασI ��� 1 � α � σvM 	 k� 1 � ω � l (1)

In this notation ε̇cr
ij are the components of the creep strain rate tensor, sij are the components

of the stress deviator, σvM is the von Mises stress, σI is the maximum positive principal stress
and ω is the damage parameter. α is a weighting coefficient allowing to consider the influence
of principal damage mechanisms(σI-controlled or σvM-controlled). The material constants are
taken for the 316 stainless steel at 650 
 C from [15]: a � 2.13 � 10 � 13 MPa � n/h, b � 9 � 10 � 10

MPa � k/h, n � 3.5, k � 2.8, l � 2.8, α � 1. The isotropic elasticity without influence of
damage has been assumed with E � 1.44 � 105 MPa as Young’s modulus and ν � 0.314 as
Poisson’s ratio.

According to the discussed mechanisms the primary and secondary creep rates are dominantly
controlled by the von Mises stress. The accelerated creep is additionally influenced by the kind
of the stress state. For example, different tertiary creep rates and fracture times can be obtained
from creep tests performed under uniaxial tension with the stress σ and under torsion with the
shear stress τ � σ 
�� 3 [16]. Fig. 1a) shows creep curves for tensile, compressive and shearing
stresses simulated by the constitutive model (1) with the introduced material constants. The cor-
responding stress values provide the same value of the von Mises equivalent stress. It is obvious
that the tertiary creep rate is significantly dependent on the kind of loading. Fig. 1b) presents
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creep curves calculated by the combined action of the normal and shear stresses. It is seen that
even the small superposed shear stress can significantly influence the axial strain response and
decrease the fracture time. On the other hand, the change of the sign of the normal stress in-
fluences both the normal and shear creep responses. The stress states with combined normal
tensile (compressive) stress and small shear stress are typical for the transversely loaded beams,
plates and shells. Fig. 2 shows creep responses under biaxial and triaxial stress states. It can be
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Figure 1: Creep responses for various stress states computed using equations (1): (a) responses
by tension, torsion and compression; (b) responses by combined tension (compression) and
torsion

observed that even a small superposition of the third principal stress significantly reduces the
von Mises creep strain rate. For the triaxial stress state with equal principal stresses the model
(1) yields the zero equivalent creep strain rate. The fracture time remains unchanged for all
stress states presented in Fig. 2 since the damage evolution is controlled by the maximum prin-
cipal stress. The experimental results on creep-damage under triaxial stress state are discussed
in [17].

Based on the creep damage material response let us discuss the requirements regarding the
through-the-thickness assumptions for modelling of thin-walled structures. Firstly, since even
the small shear stress can significantly influence the material response, the transverse shear
stress and the resulting transverse shear strain cannot be neglected. Thus at least the first order
shear deformation model has to be used for the creep damage analysis. Secondly, the depen-
dence of the creep response on the sign of the normal stress can lead to the non-symmetrical
thickness distributions of the displacement, the strain and the stress fields. This has to be con-
sidered by specifying the through-the-thickness approximations for displacements or stresses.
Finally, the transverse normal stresses which are usually neglected in the theory of elastic shells
and plates should be considered since they can significantly influence the creep responses.
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Figure 2: Von Mises creep strain vs. time for different stress states

3 Observations on Beam Equations

In what follows we discuss the assumptions of the first order shear deformation theory in detail
and introduce the beam equations. The following simplified derivations will provide conclusions
regarding cross-section assumptions in connection with the effect of the creep damage. Let us
consider a beam with a rectangular cross-section, Fig. 3. Considering the beam as a plane stress
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Figure 3: Straight beam with a rectangular cross section in Cartesian coordinates

problem the principle of virtual displacements yields

� δWi
� bh

2

l�

0

1�

� 1

� σxδεx � τxzδγxz � σzδεz � dζdx � l�

0

q̄ � x � δw � x, � h 
 2 � dx � δWa (2)
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Here l denotes the beam length, σx , σy, τxz and εx , εy , γxz are the components of the stress and
strain tensors, respectively, w is the beam deflection and ζ � 2z 
 h is the thickness coordinate.
Here and in the following derivations we use the abbreviations

∂

∂x � . . . ��� � . . . � ,x,
∂

∂z � . . . ��� � . . . � ,z,

d
dx � . . . ��� � . . . � � , d

dζ
� . . . ��� � . . . � � , d

dt � . . . ��� ˙� . . . �
For the sake of simplicity we assume the absence of tractions on the edges x � 0 and x � l.
Specifying the through-the-thickness approximations of axial displacement u and deflection w,
various engineering displacement based beam theories can be obtained, e.g. [18]. For example,
a refined displacement based beam model can be obtained with

u � x, ζ � � u0 � x � � ϕ � x � h2 ζ � u1 � x � Φ � ζ � , w � x, ζ � � w0 � x � � w1 � x � Ω � ζ � , (3)

where u0 and w0 are the displacements of the beam centreline, ϕ is the cross section rotation,
Φ � ζ � and Ω � ζ � are distribution functions, which should be specified, and u1 � x � and w1 � x � are
unknown functions of the x–coordinate.

Another possibility is the use of stress based approximations, for example, following from the
elasticity solution of the Bernoulli-Euler beam equations

σx
� 6M � x �

bh2 ζ, τxz
� 3Q � x �

2bh

�
1 � ζ2 � , σz

� 3q̄ � x �
4b

� � 2
3 � ζ � 1

3
ζ3 � , (4)

where Q and M are the shear force and the bending moment, respectively. Applying the stress
approximations E. Reissner derived the elasticity plate equations by means of the mixed varia-
tional equation [19]. The displacement approximations (3) neglecting the terms u1Φ and w1Ω

or the stress approximations (4) lead to a first order shear deformation beam theory. By generali-
sation the corresponding models of plates and shells can be obtained. The stress approximations
(4) are not suitable for creep problems because even for the steady state creep solution of a beam
the normal stress σx is non-linearly distributed along the thickness coordinate [20].

Let us derive the first order shear deformation beam equations without assumptions for the stress
σx. The transverse shear and the transverse normal stresses can be approximated as follows

τxz
� 2Q � x �

bh
ψ
� � ζ �
ψ0

, σz
� q̄ � x �

b
ψ � ζ � � ψ � 1 �

ψ0
, ψ0

� ψ � 1 � � ψ � � 1 � (5)

ψ � ζ � is a given function satisfying the boundary conditions ψ
� ��� 1 � � 0. The variation of the

work of the internal forces Wi in Eq. (2) can be written as

� δWi
� bh

2

l�

0

1�

� 1

δ � τxzγxz � σzεz � � � γxzδτxz � εzδσz � σxδεx � dζdx (6)
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With the approximations (5) and the linear strain-displacement equations εx
� u,x, εz

� w,z
and γxz

� u,z � w,x we obtain

bh
2

l�

0

1�

� 1

δ � τxzγxz � σzεz � dζdx � l�

0

�
δ � Qw̃

� � Qũ � � q̄δw � x, � 1 � � q̄δw̃ � dx (7)

with

w̃ � x � � 1
ψ0

1�

� 1

w � x, ζ � ψ � � ζ � dζ, ũ � x � � 2
h

1
ψ0

1�

� 1

u � x, ζ � ψ � � � ζ � dζ (8)

Let us assume the additive split of the total strain tensor into an elastic and a creep part

εij
� εel

ij � εcr
ij ,

and εcr
ij to be known functions of the coordinates x, ζ for the fixed time variable. Further we will

use the linear through-the-thickness approximation of the axial displacement

u � x, ζ � � u0 � x � � ϕ � x � ζ h
2

With these assumptions the underlined term in equation (6) can be transformed into

l�

0

�
N
�
δu0 � M

�
δϕ � 1

Gbhk
QδQ � γ̃crδQ � dx (9)

with the shear modulus G and

N � x � � bh
2

1�

� 1

σx � x, ζ � dζ, M � x � � bh2

4

1�

� 1

σx � x, ζ � ζdζ,

1
k
� 2

ψ2
0

1�

� 1

ψ
� 2 � ζ � dζ, γ̃cr � x � � 1

ψ0

1�

� 1

γcr
xz � x, ζ � ψ � � ζ � dζ

(10)

After summing up all terms in Eq. (2) we obtain the following variational equation

l�

0

� � Q � M
� � δϕ � � Q � � q̄ � δw̃ � N

�
δu0 � � ϕ � w̃

� � 1
Gbhk

Q � γ̃cr� δQ � dx � 0 (11)

Assuming the variations of the functions u0, ϕ, w̃ and Q to be independent Eq. (11) provides
the following ordinary differential equations

N
� � 0, M

� � Q � 0, Q
� � q̄ � 0, Q � Gbhk � ϕ � w̃

� � γ̃cr � (12)
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The first three equations are the classical equilibrium conditions of the beam. The last equa-
tion is the constitutive equation connecting the shear force and the averaged shear strain. From
this equation and with the assumed linear through-the-thickness approximation of the axial dis-
placement we obtain

u � x, ζ � � u0 � x � � ζ
h
2

w̃
� � x � � ζ

h
2

Q � x �
Gbhk � ζ

h
2

γ̃cr � x �
The second term is the rotation of the normal to the centreline (Bernoulli’s hypothesis), the
third term denotes the influence of the shear force in the sense of the Timoshenko theory, and
the last term is the contribution of the averaged creep shear strain. The coefficient k and the
average of the creep strain γ̃cr are unknown while the function ψ

� � ζ � is not specified. The
parabolic shear stress distribution function according to the solution of the elastic Bernoulli
beam ψ

� � ζ � � 1 � ζ2 yields the classical shear correction factor k � 5 
 6 for a homogeneous
rectangular cross-section.

Let us consider the classical steady state creep solution of a Bernoulli beam [20]. Assuming the
Norton-Bailey creep law we obtain

ε̇x � ε̇cr
x
� aσn

x
� � ẇ

� �
ζ

h
2

The stress σx can be expressed as

σx � x, ζ � � � � ẇ
� �

a

1 � n ���
ζ
���

1 � n � � 1ζ

�
h
2 � 1 � n � M � x �

αbh2

�
ζ
���

1 � n � � 1ζ, α � n
2 � 2n � 1 �

After inserting this equation into the equilibrium condition

σx,x � 2
h

τxz,ζ
� 0 (13)

and the integration with respect to the ζ coordinate, the distribution function can be obtained as

ψ
� � ζ � � 1 � ζ2

�
ζ
���

1 � n � � 1 (14)

Inserting this function into the first equation (10) we obtain kn
� � 3n � 2 � 
 � 4n � 2 � . Setting

n � 1 this equation yields the shear correction factor of elastic beam with rectangular cross-
section. Since the value of n varies between 3 and 10 for metallic materials we can estimate, for
example, if n � 3; 10, kn

� 11 
 14; 16 
 21, respectively. It can be seen that kn in the case of
steady state creep is influenced by the creep exponent. The value of kn decreases with increasing
creep exponent (for n 	 ∞ we obtain k∞

� 3 
 4). Because the effect of damage is connected
with the increase of the creep strain rate, the decreasing of the shear correction coefficient can
be expected if damage evolution is taken into account. In addition, if the damage rate differs for
tensile and compressive stresses, the thickness distribution of the transverse shear stress will be
non-symmetrical. In this case the function ψ

�
cannot be selected a-priori. In [10] the function ψ

�
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Figure 4: Time dependent solutions of a clamped beam: (a) maximum deflection vs. time; (b)
shear correction factor vs. Time, 1 – Bernoulli-Euler beam theory, 2 – first order shear defor-
mation theory with parabolic shear stress distribution, 3 – first order shear deformation theory
with modified shear stress, 4 – solution using the ANSYS code with PLANE 42 elements

and the shear correction factor have been estimated for the creep-damage problem of a clamped
beam. Fig. 4 presents the simulation results for the uniformly loaded beam with clamped edges.
For the calculations we set l � 1000 mm, b � 50 mm, h � 100 mm and q0

� 50 N/mm. The
material model (1) with introduced material constants is used. The curve 1 on the Fig. 4a) is
the time dependent maximum deflection calculated by use of the Bernoulli-Euler beam theory.
The corresponding equations and the numerical procedure are presented in [21]. The curve 2
is obtained using the beam model with the parabolic transverse shear stress according to Eqs
(4) and the shear correction coefficient as 5 
 6. The curve 3 is the solution based on the equa-
tions discussed above with the modified function ψ

� � ζ � . The numerical method which allows
to compute the function ψ

� � ζ � within the time-step schema is presented in [10]. The curve 4 is
the ANSYS code finite element solution obtained with plane elements PLANE 42. It is obvious
that the Bernoulli-Euler beam theory cannot adequately predict the deflection growth. Further,
the first order shear deformation theory underestimates the deflection particularly on the last
stage of the creep process. By modification of the transverse shear stress distribution function a
better agreement between the elementary beam theory and the plane stress solution is obtained.
Fig. 4b) presents the dependence on time of the shear correction factor. With decreasing value
of k we can conclude that the influence of the shear correction terms in the discussed equations
increases.

The damage evolution in the beam is dominantly controlled by the maximum positive bending
stresses. Fig. 5 shows the distribution of the damage parameter at the last step of calculation. Fig.
6a) presents the distribution of the transverse shear stress τxz obtained by ANSYS code with
PLANE 42 elements. It can be observed that near the beam edges where the maximum damage
occurs the distribution is non-symmetrical across the thickness direction. Fig. 6b) shows the
solution according to the derived beam equations. The transverse shear stress can be calculated
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Figure 5: Damage distribution in a beam at last time step
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Figure 6: Transverse shear stresses in a beam: (a) τxz at last time step, solution with PLANE
42 elements; (b) shear force distribution according to the beam equations; (c) function of the
transverse shear stress distribution for different time steps

as a product of the shear force and the function of the distribution ψ
�

with a constant factor.
Since for the considered beam the shear force remains constant during the creep process (it is
statically determinate) the time-dependence of the transverse shear stress is determined by the
time-dependence of the function ψ

�
. This function is computed based on the method discussed

in [10] and plotted in Fig. 6c) for different time steps.
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4 Numerical Analysis of Plate in Bending Based on Solid and
Shell Elements

In order to demonstrate the boundary layer effects let us perform a finite element analysis of a
rectangular plate in bending. As an example we selected the square plate lx

� ly
� 1000 mm,

h � 100 mm loaded by an uniformly distributed force q � 2 N/mm2, Fig. 7. The edges x � 0
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Figure 7: Rectangular plate: geometry and boundary conditions

and x � lx are simply supported and the edges y � 0 and y � ly are clamped. The analysis has
been performed using the ANSYS finite element code after incorporating the material model
(1) with the help of the user defined creep material subroutine. In [21] we discussed various
examples for beams and plates in bending, which verify the modified subroutine. Two types of
finite elements available in the ANSYS code for plasticity and creep analysis were used: the 20
nodes solid element SOLID 95 and the 4 nodes shell element SHELL 43 [22]. 30 � 15 elements
were used for a half of the plate in the case of the shell model and 30 � 15 � 3 elements in
the case of the solid model. The meshes have been justified based on the elasticity solutions
and the steady state creep solutions neglecting damage. With these meshes the reference stress
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distributions as well as distributions of the von Mises stresses in the steady creep state were
approximately the same for both the solid and the shell elements and did not change by further
re-meshing. For details of time integration and equilibrium iteration methods used in ANSYS
for creep calculations we refer to [22] and [23]. The time step based calculations were performed
up to ω � ω �

� 0.9, where ω � is the critical value of the damage parameter.

According to the Reissner-Mindlin type plate (shell) elements [22] we can prescribe kinematical
boundary conditions in terms of three displacements u, v, w of the plate middle surface (u and
v denote the in-plane displacements and w is the deflection) and two rotations ϕ1 and ϕ2. In the
case of the 3-dimensional model three displacements can be prescribed on the plate edges in all
nodes of the thickness direction. Fig. 7 illustrates the used kinematical boundary conditions for
the shell and the solid models. Let us note that the boundary condition of the clamped edge can
be realised by different ways applying the solid model. In order to demonstrate the influence
of boundary layers on creep solutions two types of boundary conditions corresponding to the
model of clamped edge are introduced. In the first type (TYPE I), see Fig. 7, we assume the
in-plane displacements u and v to be restricted in all nodes across the thickness direction. The
deflection w is zero in the nodes of the plate middle surface only. In the second type (TYPE II)
all three displacements are assumed to be zero in all nodes across the thickness direction. The
difference between these two types of the boundary conditions can be simply established based
on the governing equations of elasticity theory. For example if we consider the completely
clamped edge y � 0 then we can assume εx

� εz
� 0 in all points of the edge. From the

generalised Hooke’s law

σij
� E

1 � ν

�
εij � ν

1 � 2ν
δijεkk �

we obtain according to the boundary conditions

σx
� σ11

� E
1 � ν

ν

1 � 2ν
εy , σy

� σ22
� E

1 � ν

1 � ν

1 � 2ν
εy, σz

� σ33
� E

1 � ν

ν

1 � 2ν
εy

Frome the above equations follows

σx
� σz

� ν

1 � ν
σy

With ν � 0.314 for the considered 316 stainless steel we obtain for the transverse normal stress
σz � 0.458σx . The assumed completely clamped edge conditions correspond are the boundary
conditions of the TYPE II, Fig. 7. In the case of the TYPE I we can observe that σz

� � q on the
plate top surface and σz

� 0 on the plate bottom surface. The TYPE I of the boundary conditions
corresponds to the assumptions of the Reissner type plate theory (in the case of beam see Section
3). Therefore the elasticity solutions obtained from the finite element simulation according to
the SOLID model with TYPE I boundary conditions are in agreement with those obtained based
on the SHELL model, Figs 8 and 9 (dotted lines). In the case of the SOLID model with TYPE
II boundary conditions the boundary layer is observed for the transverse normal stresses σz,
Fig. 9. The maximum transverse normal stresses are observable in the clamped edges and their
computed values agree with the above estimate σz � 0.458σx . These maximum stresses decay
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Figure 8: Distributions of bending stresses σy: (a) along the line AB, top surface; (b) along the
line CD, bottom surface

rapidly with increased distance from the boundary and arrive to the values equal the given
transverse load on the top surface and zero on the bottom surface. The distributions of σz for
the solid model with TYPE I boundary conditions are the same as those obtained by use the
plate theory. The solid lines in Figs 8 and 9 present the stress distributions obtained at the last
time step of the creep process (critical damage state). It can be observed that the creep process
significantly influences the distribution of bending stresses. The increase of the creep strains is
accompanied by the relaxation of the bending stresses, Fig. 8. In contrast the distributions of
transverse normal stresses do not change for the first two models or slightly change in the case
of the solid model with TYPE II boundary conditions, Fig. 9. Because the stiffness of the plate
with respect to the thickness changes is much higher as the bending stiffness we can assume that
the transverse normal stresses are completely defined by the equilibrium conditions (statically
determinate) and are not influenced by the creep strains. The results based on the shell elements
agree again well with the results obtained with the solid mesh with TYPE I boundary conditions,
Fig. 9. The difference between the obtained solutions based on three discussed models of the
plate is clearly seen on the time variations of the maximum deflection and the maximum damage
parameter, Fig. 10. In the example considered the shell model is conservative with regard to
the life-time prediction, it overestimates the time to fracture and underestimates the maximum
deflection. The solid model with the TYPE I boundary conditions yields shorter time to fracture
and higher rate of the deflection growth. Similar effects were observed in Fig. 4a) for the beam
and plane stress based solutions. Since the clamped edge boundary conditions of the TYPE I in
the solid model correspond to those in the shell model one can explain the obtained differences
to be the result of the constant shear correction factor and fixed (time independent) transverse
shear stress distributions in the shell elements. The contributions of the transverse shear stress
are discussed in detail in Section 3 for a beam. Fig. 12 shows the damage distribution obtained
by use the solid model with TYPE II boundary conditions. The zone of the maximum damage
is observable at the midpoint of the clamped edge on the top surface of the plate. The same zone
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Figure 9: Distributions of transverse normal stresses σz: (a) along the line AB, top surface; (b)
along the line CD, bottom surface
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Figure 10: Time variations: (a) maximum deflection; (b) damage parameter

of the maximum damage is obtained if we apply the shell model or the solid model with TYPE
I boundary conditions. However, the failure time predictions significantly differ for the three
models applied. Fig. 12 illustrates the time variations of the three principal stresses in the Gauss
point where the critical damage is obtained. The first principal stress σI is approximately equal
the dominating bending stress σy, σI I is determined by the bending stress σx and σI I I – by the
transverse normal stress σz since the shear stresses are small in the point considered. Applying
the solid model with TYPE I boundary conditions the third principal stress is approximately
zero during the whole creep process, Fig. 12a). Therefore both the creep and the damage rates
are controlled by the biaxial stress state determined by the two principal stresses. The same
result is obtained using the model with shell elements. In contrast the boundary layer solution
for σz resulting from the solid model with TYPE II boundary conditions is responsible to the
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Figure 11: Damage distribution at last time step
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Figure 12: Principal stresses vs. time at point A: (a) SOLID, TYPE I; (b) SOLID, TYPE II

third principal stress, Fig. 12b). At t � 0 its value is much smaller then the value of the first
principal stress. However, since the bending stress σy significantly relaxes as a consequence
of creep and the transverse normal stress remains approximately constant we observe that the
creep process is controlled by the triaxial stress state. Furthermore, with the stress relaxation the
values of the three principal stresses become of the same order. As we discussed before, see Fig.
2, if all principal stresses tend to be equal, the triaxial stress state results in significant decrease
of the creep strain rate. The damage rate remains the same since it is determined by the first
principal stress only. Consequently, comparing the three models of the considered plate (the
two-dimensional model and the solid models with different boundary conditions) we observe
that in the case of TYPE II boundary conditions the deflection rate is smaller, see Fig. 10a), but
the damage rate is much higher, see Fig. 10b).
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5 Conclusions

We discussed non-linear time-dependent solutions based on the first order shear deformation
equations of beams and plates as well as the corresponding three-dimensional models in con-
nection with creep-damage material models. We demonstrated on the beam equations that the
shear correction factor and the function of the thickness distribution of the transverse shear
stress have to be modified by solving the creep-damage problems. This function is important
for the correct estimation of the transverse shear stresses as well as of the averaged cross-section
rotations and the averaged creep shear strain.

Further we performed the finite element analysis of a plate in bending with solid and shell
type finite elements available in the ANSYS code. The results were compared for different
types of boundary conditions corresponding to the model of a clamped edge. The disagreement
between the results is observed on the edge zone stress redistributions. This is explained to be
the result of the dependence of the creep response on the kind of the stress state induced by
damage evolution. The transverse shear stress and the transverse normal stress can essentially
influence the deformation behaviour if time-dependent creep and damage are taken into account.
These stresses cannot be accurately computed within the framework of the first order shear
deformation theory of beams, plates and shells.

Further investigations should be directed to the examinations of higher order terms in through-
the-thickness displacement or stress field approximations of beams, plates and shells in con-
nection with creep damage studies. The refined higher order theories should be discussed with
respect to the accuracy of edge zone time-dependent stress redistributions for various types of
boundary conditions.
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