УДК 621:664(076)

Гарев А.О., Чернышев И.С., Бабак Т.Г., Балаба Ю.О., Колесник Е.А., Сильченко К.А.

СРАВНИТЕЛЬНАЯ ОЦЕНКА ЭНЕРГОЗАТРАТ РЕКТИФИКАЦИИ ЧАСТИЧНО РАСТВОРИМЫХ КОМПОНЕНТОВ СМЕСИ ФУРФУРОЛ-ВОДА ПРИ РАЗЛИЧНЫХ СПОСОБАХ ОРОШЕНИЯ И ПИТАНИЯ КОЛОННЫ

Актуальность работы. Разделение азеотропных систем частично растворимых друг в друге веществ на практически чистые компоненты представляет большой интерес для ряда химических, гидролизных, нефтехимических производств. Обычно это многотоннажные производства, а поэтому вопросы энергосбережения становятся особенно актуальными. В зависимости от принадлежности смеси к эвтектическому или неэвтектическому виду, от характера кривых растворимости компонентов, а также от фазового состояния исходной смеси и качества конечных продуктов промышленности реализуются различные схемы ректификационных установок [1].

В процессах регенерации водных растворов фурфурола исходная смесь обычно содержит порядка 7–8 % мас. фурфурола, конечная концентрация дистиллята должна быть не менее 94 % мас., а водный кубовый остаток должен иметь содержание фурфурола не более 0,02 % мас. Для ректификации такой исходной смеси при таких требованиях к конечным продуктам чаще всего используют одноколонную схему с одним отстойником для декантации фаз. При этом могут быть следующие варианты: одна из фаз после отстойника используется для орошения в качестве флегмы или она подается в промежуточное сечение укрепляющей части колонны, либо смешивается с исходной смесью и подается на питание колонны [2].

Для корректной оценки рассчитаем энергозатраты всех приведенных выше вариантов при одинаковой производительности по исходной смеси F, кг/с, одинаковых значения концентрации исходной смеси \bar{x}_F ,%, дистиллята \bar{x}_P ,%, кубового остатка \bar{x}_W ,%. По кривой растворимости [3] определим температуру декантации фаз в отстойнике, обеспечивающую не менее 94% мас. фурфурола в тяжелой фазе. При температуре 30° C азеотропная смесь расслаивается с содержанием фурфурола в водной фазе 8,8%, в органической – 94,2%. Окончательно в качестве исходных данных примем следующие значения: F = 1,5 кг/с, $\bar{x}_F = 7\%$, $\bar{x}_P = 94,2\%$, $\bar{x}_W = 0,02\%$.

На рисунке 1 представлена схема процесса ректификации с подачей одной из фаз после отстойника на орошение колонны в качестве флегмы. Энергетические затраты в этом варианте составили: $Q_{\rm K}=1143,14\,{\rm kBT},~Q_F=412,92\,{\rm kBT},~Q_\Phi=67,83\,{\rm kBT},~Q_\Pi=953,75\,{\rm kBT},~Q_{\rm X}=81,87\,{\rm kBT},~Q_W=407,39\,{\rm kBT}.$

Суммарные значения горячей утилиты $Q_H = 1623,89\,\mathrm{kBt},$ холодной — $Q_C = 1443,02\,\mathrm{kBt}.$

На рисунке 2 представлена схема ректификационной установки, где одна из фаз после декантации в отстойнике подается в промежуточное сечение укрепляющей части колонны. В этом случае энергозатраты получились следующие: $Q_{\rm K}=3171,105\,{\rm kBT},$ $Q_{\rm F}=412,92\,{\rm kBT},$ $Q_{\rm G}=67,9735\,{\rm kBT},$ $Q_{\rm G}=3108,69\,{\rm kBT},$ $Q_{\rm G}=81,87\,{\rm kBT},$ $Q_{\rm G}=407,39\,{\rm kBT}.$

Суммарные значения горячей утилиты $Q_H = 3733,878\,\mathrm{kBt},$ холодной — $Q_C = 3592,962\,\mathrm{kBt}.$

Рисунок 1 — Схема процесса ректификации с подачей одной из фаз после отстойника на орошение колонны в качестве флегмы

Рисунок 2 – Схема процесса ректификации с подачей одной из фаз после отстойника в промежуточное сечение укрепляющей части колонны

Представленный на рисунке 3 вариант процесса ректификации имеет следующие энергозатраты: $Q_{\rm K}=3063,127\,{\rm kBt},~Q_{F'}=477,393\,{\rm kBt},~Q_{\rm Д}=3108,69\,{\rm kBt},~Q_{\rm X}=81,87\,{\rm kBt},~Q_{\rm W}=407,39\,{\rm kBt}.$

Суммарные значения горячей утилиты $Q_H = 3540, 52 \, \mathrm{kBt},$ холодной – $Q_C = 3597, 959 \, \mathrm{kBt}.$

Рисунок 3 – Схема процесса ректификации с подачей одной из фаз после отстойника на питание колонны

Анализ проведенных расчетов показывает, что наименьшие энергозатраты имеет вариант процесса, когда водная фаза после отстойника направляется на орошение колонны в качестве флегмы. Вариант подачи водной фазы после отстойника в промежуточное сечение укрепляющей части колонны и на ее питание имеют практически одинаковые энергозатраты, которые превышают энергозатраты предыдущего варианта более чем в два раза. Во всех трех рассмотренных вариантах процесса бросается в глаза тот факт, что отсутствует рекуперация тепла, в то время как горячие и холодные утилиты имеют близкие значения. В связи с этим для снижения энергозатрат необходимо провести интеграцию тепловых потоков, чтобы достичь максимально возможной рекуперации тепла. Интеграцию тепловых потоков рационально провести, базируясь на методах пинч-анализа [4], которые позволяют, задавшись экономически оправданным значением минимальной разности температур теплоносителей ΔT_{\min} , получить максимально возможную долю рекуперации тепла.

В таблице 1 представлены данные внешних тепловых потоков для всех трех рассмотренных выше вариантов.

Определение целевых энергетических значений $Q_{H\,\mathrm{min}}$ и $Q_{C\,\mathrm{min}}$ провели методом составных кривых и методом табличного алгоритма при $\Delta T_{\mathrm{min}} = 10$ °C . В результате получены следующие значения: для варианта №1 $Q_{H\,\mathrm{min}} = 90,27\,\mathrm{kBt}$, $Q_{C\,\mathrm{min}} = 98,79\,\mathrm{kBt}$; для варианта №2 $Q_{H\,\mathrm{min}} = 61,94\,\mathrm{kBt}$, $Q_{C\,\mathrm{min}} = 70,32\,\mathrm{kBt}$; для варианта №3 $Q_{H\,\mathrm{min}} = 62,95\,\mathrm{kBt}$, $Q_{C\,\mathrm{min}} = 70,29\,\mathrm{kBt}$. Энергозатраты в результате интеграции внешних тепловых потоков сократились по горячим и холодным утилитам для варианта №1 на 24,04 % и 27,06 %, для варианта №2 на 13,41 % и 11,64 %, для варианта №3 на 11,7 % и 11,64 %.

На рисунках 4,5,6 представлены модернизированные схемы ректификационных установок, обеспечивающие максимально возможную рекуперацию энергии внешних тепловых потоков при выбранном $\Delta T_{\min}=10~^{\circ}\mathrm{C}$.

Таблица 1

№	Поток	Расход, кг/с	$T_{\rm H}, {}^{\circ}{ m C}$	$T_{\rm K}, {}^{\circ}{ m C}$	ΔT,°C	C , кДж/(кг \cdot ° C)	ΔH , к B т	<i>CP</i> , кВт/.°С
Вариант №1								
1	G'	0,3618	97,9	30	67,9	3,333	81,879	1,2059
2	W	1,389	100	30	70	4,19	407,394	5,8199
3	F	1,5	30	98,5	68,5	4,0187	412,921	6,0281
4	Φ	0,4695	58,6	97,9	39,3	3,676	67,831	1,726
Вариант №2								
1	G'	0,3618	97,9	30	67,9	3,333	81,879	1,2059
2	W	1,389	100	30	70	4,19	407,394	5,8199
3	F	1,5	30	98,5	68,5	4,0187	412,921	6,0281
4	q	0,2508	30	98,2	68,2	3,974	67,974	0,9967
Вариант №3								
1	G'	0,3618	97,9	30	67,9	3,333	81,879	1,2059
2	W	1,389	100	30	70	4,19	407,394	5,8199
3	F'	1,7508	30	98,6	68,6	4,0126	481,933	7,0253

Рисунок 4 — Модернизированная схема процесса ректификации с подачей одной из фаз после отстойника на орошение колонны в качестве флегмы РК — ректификационная колонна, Д — дефлегматор, H1-H2 — подогреватели, X1 — холодильник,

РТ1-РТ4 – рекуперативные теплообменники, О – отстойник

Рисунок 5 — Модернизированная схема процесса ректификации с подачей одной из фаз после отстойника в промежуточное сечение укрепляющей части колонны

РК – ректификационная колонна, Д – дефлегматор, Н1-Н2 – подогреватели,

X1, X2 – холодильники, РТ1-РТ4 – рекуперативные теплообменники, О – отстойник

Рисунок 6 – Модернизированная схема процесса ректификации с подачей одной из фаз после отстойника на питание колонны

PK – ректификационная колонна, Д – дефлегматор, H – подогреватель, X1, X2 – холодильники, PT1-PT2 – рекуперативные теплообменники, O – отстойник

Как видно из представленных схем, энергосбережение в каждом варианте достигнуто за счет увеличения количества теплообменных аппаратов. В связи с этим окончательный выбор оптимальной схемы процесса следует проводить не только с учетом энергозатрат, но и с учетом капитальных затрат, которые определяются стоимостью как теплообменного оборудования, так и стоимостью самой колонны.

Выводы

Сравнительная оценка энергозатрат процесса ректификации частично растворимых компонентов смеси фурфурол-вода при различных вариантах питания и орошения колонны позволяет сделать вывод, что наименьшие энергозатраты имеет вариант с подачей водной фазы после отстойника на орошение колонны в качестве флегмы. Дальнейшее сокращение энергозатрат возможно только за счет интеграции внешних тепловых потоков. Интеграция, проведенная методами пинч-анализа, позволила сократить энергозатраты до 27 %.

Литература

- 1. Гельперин Н.И. Основные процессы и аппараты химической технологии. М.:Химия, 1981, 812 с.
- 2. Багатуров С.А. Основы теории и расчета перегонки и ректификации. М.:Химия, 1974, 439 с.
- 3. Коган В.Б., Фридман В.М., Кафаров В.В. Равновесие между жидкостью и паром. Кн. 1 и 2. М.-Л., Наука, 1986, 1426 с.
- 4. Смит Р., Клемеш Й., Товажнянский Л.Л., Капустенко П.А., Ульев Л.М. Основы интеграции тепловых процессов. Харьков:НТУ»ХПИ», 2000, 457 с.

УДК 621:664(076)

Гарєв А.О., Чернишов І.С., Бабак Т.Г., Балаба Ю.О., Колісник О.А., Сільченко К.О.

ПОРІВНЯЛЬНА ОЦІНКА ЕНЕРГОВИТРАТ РЕКТИФІКАЦІЇ ЧАСТКОВО РОЗЧИННИХ КОМПОНЕНТІВ СУМІШІ ФУРФУРОЛ-ВОДА ПРИ РІЗНИХ СПОСОБАХ ЗРОШЕННЯ Й ЖИВЛЕННЯ КОЛОНИ

Надано порівняльну оцінку енерговитрат процесу ректифікації азеотропної суміші фурфурол-вода при різних способах живлення й зрошення колони. Вирішено задачу оптимальної рекуперації енергії для різних варіантів організації процесу з використанням методів пінч-аналізу.

Garev A.O., Chernyshev I.S., Babak T.G., Balaba Y.O., Kolesnik E.A., Silchenko K.A.

THE COMPARATIVE ESTIMATION OF POWER CONSUMPTION IN FURFURAL-WATER MIXTURE RECTIFICATION FOR VARIOUS KINDS OF FEEDING AND REFLUXING OF A COLUMN

The comparative estimation of power consumption of rectification process was given for various kinds of feeding and refluxing of a column. The problem of optimal energy recovery for various types of the process organization was solved by pinch-analysis methods.