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FINITE-STEP METHOD FOR DETERMINING EQUILIBRIUM STATE OF GYROTHEODOLITE

The problem of orientation of a solid by using eston suspended gyrotheodolite is considered. $yobtheodolites are widely used in modern
technology. During their operation, the problensesi of identifying the equilibrium position. It che solved in many ways. A method is proposed
for identifying the equilibrium position of a gytaodolite, which has several advantages over atledirknown classical methods (least squares
method, Kalman filter, and others). A mathematézdcription of the gyrotheodolite rotor motion reyided, a mathematical model of the method is
given, and further development of the researchdiated.

Key words: gyrotheodolite, azimuth, gyroscope, inertial momeamping moment, directing moment, moment froheounaccounted proc-
ess forces.

I.A. TOKMAKOBA

KIHHEBO-KPOKOBHUU METOJA BUSHAUYUEHHS PIBHOBAXHOI'O IMOJOXEHHSA

T'TPOTEOJOJIITA
Po3rispaerses 3anaua opieHTallii TBEpIOTro Tijia 3a IOMOMOIOK0 IipOTe010J1iTa Ha TOPCIOHHOMY TiJBici. Taki ripoTeonoita MalOTh IUPOKE 3aCTOCY-
BaHHs B cy4acHiil TexHini. [Ipu ix poOoTi BUHHUKaE 3ama4a ineHTudikaii monoxeHHs piBHOBaru. BoHa Moxxe BupimyBatics 6araTbMa croco0amm.
3anponoHoBaHO METO[ iAeHTH(]iKallii piBHOBAKHOTO MOIOKEHHS TiPOTEO10MiTa, AKUIl Ma€ psJ epesar nepes iHmMUMH BiJOMUMHU KIaCHIHHUMH METO-
JaMu (METOJZIOM HaliMEeHINUX KBaaparis, Gpinbtpom Kanmana ta iHmmmu). BukianeHo MaTeMaTH4HUI OMUC PyXy pOTOpa ripoTeo/I0IiTa, JaHa MaTeMa-
TUYHA MOZENTb METOY 1 MO3HAUEHO TOJATBIINI PO3BUTOK JAHUX JOCIIDKEHb.

KJ11040Bi ¢j10Ba: TipOTEOAONIT, a3UMYT, TipOCKOII, IHEPLIfHNI MOMEHT, AeMIIPYIOUHii MOMEHT, CIIPSMOBYIOUMII MOMEHT, MOMEHT BiJ iHIINX
HEBPAXOBAHUX CUJI IPOLIECY.

H.A. TOKMAKOBA

KOHEYHO-IATIOBbIM METO/J OIMMPEAEJEHUA PABHOBECHOTI'O ITOJIO)KEHU S

I'MPOTEOJOJIUTA
PaccmarpuBaeTcs 3a1a4a OpHEHTALMK TBEPOTO TeNa C TOMOIIBIO TMPOTEOI0IMTa HA TOPCHOHHOM TO/IBECE. Takie rupOTeo010IUThl IMEIOT IMHPOKOE
NPHMEHEHUE B COBPEMEHHOI TexHuKe. [Ipu ux paboTe BOSHHKAET 3a/a4a MACHTU(UKALMH NOJIOXKEHUs paBHOBecHs. OHa MOXKET peraThesi MHOTUMU
crniocobamu. [IpenoxkeH MeToa MACHTU(UKALMK PABHOBECHOTO MOJIOKEHHS! THPOTEOAO0IUTA, KOTOPBIN UMEET PsiJi MPEUMYIIECTB Iepe APyruMHU 13-
BECTHBIMH KJIACCUYECKMMHU METOJaMH (METOJIOM HaMMEHBIINX KBaapatos, Gunbtpom Kammana u apyrumu). M3nokeHO MaTeMaTHYeckoe ONMucaHne
JIBIDKEHHS POTOpA FMPOTE0I0JIMTA, IJaHa MAaTEMATHYECKas MOJIE]Ib METO/1a M 0003HAYEHO JalbHEIee Pa3BUTUE JAHHBIX HCCIIEI0BAHMUH.

KuioueBble c/10Ba: THPOTEOJOIUT, a3UMYT, TUPOCKOI, MHEPLMAIBHBIA MOMEHT, AeMI(UPYIONINI MOMEHT, HANPABIISIONINIT MOMEHT, MOMEHT
OT MPOYMX HEYUTEHHBIX CHIT IPOLIECCa.

Introduction. Nowadays the majority of the problems of identi-
fication of the parameters of orientation systemshe measurement
results are solved using the algorithms based olus numerical
methods. When developing a competitive numericathot one
needs to provide for a series of requirements whiehdue to the
features of the specific practical problem congdeiVhen identify-
ing the gyrotheodolite equilibrium position it is of particular impor-
tance to meet the following requirements:

— providing the identification accuracy;

— the minimal amount of measurements;

— the algorithm performance;

— stability of the computational process;

— the algorithm simplicity;

— low interference susceptibility.

Fig. 1 — Gyrotheodolite model. Previous to developing a mathematical model ofntte¢hod
proposed in this paper we consider the featuréiseomathematical description of the gyrotheodatiter motion.

A gyrotheodolite is commonly used for determinihg &zimuths of directions on the Earth’s surface. By its con-
struction a gyrotheodolite is amgle gauge incorporating agyroscope, which is the part of the device responsible for
determining the direction of the true meridian, arttheodolite [1].

The problem of determining the azimuth arises inowss applications, such as, for instance, navigadif aircrafts,
ships, submarines, during surveying, mine tunneleig. For solving this problem gyroscopic azimatientation in-
struments are widely used, which have several @dgas over the astronomical, magnetic and othehadst such as
the capability to operate in any season and atiareyof the day, inside closed objects includindpior spaces [2].
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In the majority of the gyrotheodolite models avhiéathe sensitive element, which is directly inexhin determin-
ing the true meridian plane, consists of a torssospended pendulous gyroscope with automated migucystem

(fig. 1).

Gyrorotor 1 in casing 2 is suspended by a flexthjge called torsion 3. In order to reduce the uag#y torque
caused by the torsion elastic torquergion bar spring tension) a tracking system or torsion support system is intro-
duced, which rotates the torsion upper end fixatinit following the motion of the sensitive elemenhe tracking sys-
tem is composed of mirror 4, error sensor 7, aneplB and drive 5 connected to torsion upper exatifin unit 3 [2].

To simplify the explanation of the operation
principle of a torsion suspended two-degree-of-
freedom gyrotheodolite pendulum let us assume that
the gyrotheodolite is placed at the Equator ¢@ig.
and the main gyroscope axis is horizontal and
aligned with the West-East direction at the initial
moment of time, besides the kinetic momentum is di-
rected eastwards (position I, f@). In this case the
sensitive element gravity center is in the vertical
plane and, hence, does not generate a moment
about the gyromotor axis. Due to the daily rotation
of the Earth the horizon plane as well as the direc
tion of the local vertical changes its location twit
respect to the inertial space continuously. At the

Fig. 2 — Gyrotheodolite operation principle. same time the direction of the
gyrorotor axis stays unchanged in the inertial spaimce no momentum is applied to the gyroscogedition I, fig.2.
Hence, the main axis deviates from the local heorigtane (position I, fig2), besides the gyroscope rotates about the

point at which it is attached to the torsion. Thawgational moment generated therebly, = P(S3, where S is the an-

gle of deviation of the gyroscope main axis frora theridian plane (position Il, fig. 2), induces thaoscope preces-

sion in the direction which takes the kinetic moméh to get aligned with the meridian plane (positidh fig. 2).
In order for the gyroscope main axis to keep itdmeards direction after being aligned with the ridiean plane it
needs to rotate with the same angular velocity as the
meridian plane, i.e.ar sing at the latitude ¢,

where ax is the angular velocity of the Earth.
Thus at the deviation by angle, (or f,)

the gyro compass executes undamped oscillat

about its equilibrium position, which lies in the

meridian plane, moreover the trajectory of the gy-
() roscope axis is an ellipse which semi-major axis
is in the horizon plane and semi-minor axis is in
the vertical plane. As a rule the ratm, .,/ Bmax

reaches 200- 50C and the oscillation period is
tens of minutes. Since the vertical component of
the angular velocity of the Earth at the Equator is

zero: ¢ =0°, wy =asing =0, the middle posi-

tion of the oscillations of the gyroscope in tljfe

angle (fig.3) lies in the horizon plane. At arbi-
_ _ o _ trary latitude the trajectory (figh) of the gyro-
Fig. 3 — Gyrotheodolite main axis precession scheme scope axis is also an ellipse with center shifted u

by A" (for northern latitude).

Thus the gravitational moment needs to give rise toogpppe precession in azimuth with the velocity

Wy =k Sing relative to the inertial space:

M . pg-
Wy =7p or a)Esm¢=Tﬁ, )
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hence, ,B'j:%wE sing . 2)

At the deviation of the main axis from the horizdane the angle velocity of the gyroscope precessititeisame
as the velocity of the meridian plane rotation. N#haess, there occur the oscillations of the gyrpsamain axis rela-
tive to the meridian plane, which origins are consdebelow.

AL Assume that at the initial moment of time the gyrgesco
B main axis is in the horizon plane at the Equatoriarsldevi-
ated from the meridian plane by the angtg (point 1 in

fig. 3). Since at this position the ang/@=0 and the pendu-
losity M, =0, the gyroscope acts as a free gyroscope, i.e. the
- positive end of its main axis falls relative to tharizon plane

due to the Earth’s rotation. The deviation of theogcope
main axis by the anglegs from the horizon plane results in
the gyroscope precession in the direction of aligntof the
main axis with the meridian plane due to the peosity
Fig. 4 — Trajectory of gyroscope axis at arbitriatjtude. M, =P(B (point 3 in fig.3).

In the position corresponding to point 3 (fi.the angle of deviation of the gyroscope from the horizonngla

reaches its maximum modulo and the velocity ofgfi®scope is zero, hence, it passes this position.
On segment 3 — 5 (fi@) the horizon plane rotates towards the gyroseoam axis. Thus the anglg decreases

which results in the decreasing pendulosity, ; the eastward precession of the gyroscope magsisws down and at

point 5 (fig.3) the precession angle velocity becomes zerogyhescope deviation from the meridian plane readses
maximum. Further on the rotation of the horizonngl&auses the rise of the gyroscope main axis att@véorizon
plane, the anglgs increases thus bringing about the gyroscope psemesThe pendulosity is now of the opposite sign

which again results in gyroscope precession reativmeridian plane (segment 5 — 6, 8. At point 6 (fig.3) the de-
viation of the gyroscope main axis form the horigane reaches its maximum one more time, thusgyiescope
moves westwards with the maximal speed, hencedis axis passes the meridian plane.

On segment 6 — 1 (fi@) the horizon plane moves towards the gyroscope mds, hence, the anglg and the

pendulosity M, gradually decrease, the gyroscope precession slows and its angular velocity becomes zero at

point 1 (fig.3) [3].

In the absence of the momenta other than pendylt®ttrajectory of the gyroscope axis is an edligs reality,
since the presence of the momenta (such as suspéristion moment, torsion bar spring tension mametc.) is in-
evitable, the oscillations of the gyroscope axisagein time, nevertheless the decay process lastguite a long time.
That is why the computational algorithms for quid&ntification of the true meridian are requiredhieh allow for solv-
ing the problem with the given accuracy and in shiore at the maximal volume of measurements ofitgle a .

The motion of the gyrotheodolite main axis is apgrately described by the following equation [4]:

Ad +Dd + HU cosg sing =M 3)
where Ad is the inertia momentD¢d is the damping momentiU cosg sing is the meridian alignment momen

stands for the moment resulting from other unactaiforces;U is the gyrotheodolite velocity.

Equation (3) can be considered as a particular afaeautomatic control system (ACS).

The problem of identification of system parametgyghe output signal measurement results is orikeofelevant
identification problems, which in the case of equrai1) consists in identifying the true meridiantbe anglea equi-
librium.

In those cases when in the process of problemrephtie volume of the stored information and proicgssme are
strictly regulated applying the classical methagiech as, for instance, Kalman filter, etc.) cae'fjistified. Then the fi-
nite-step method proposed in this paper can beesstdly applied, which provides a solution aftefirdte predeter-
mined number of computations without any iteragivecedure involved. At the same time the solutibtamed by this
method is mathematically exact.

We need to mention here that the algorithm propgsesides a solution to the identification probléon a real
ACS with the given accuracy in the case when ittheraatical model slightly differs from the real one

Problem setting. Main and secondary problems. The solution to equation (1) and those which amglar to it
can be given by the sum of a const&tanddecaying sinusoids as follows:

Bicnux Hayionanvrnoeo mexwiunozco ynisepcumemy «XI11». Cepia:. Mamemamuyne
98 Mooentosanis 8 mexwiyi ma mexuonoeisx, Ne 1 (1355) 2020.



ISSN 2222-0631 (print)

a(t)= R+§:A{<Rﬁkt sin(awt +¢y ), 4)
k=l

where S, can be either positive or zero [4].

Since in the case of gyrotheodolite and some A@®sconstant is the main object to be identifibé, problem of
computing R with high accuracy in limited time is referredasthe main problem below. Therthe secondary problem
consists in identifying the parametefs, 5., ., ¥, . The algorithm presented in the paper providesdédving both

of these problems. Nevertheless, the main focos ifie substantiation of the main problem withiaurtg the ways for
solving the secondary one. Let us hame the methexkptedhe method of equidistant points.

Mathematical model. M ethod of equidistant points. Solving the main problem, i.e. the problem of idlfgirig
the constantR in (4), requires sufficient numbe¥, of measurementa( ) The numberN,; depends on the quantity

of the unknown parameters in (4) which need todeatified. We assume that the measurements are sakegular in-
tervals of time, then

t; =to+jat, (j=0,1,2,..n), (5)
wheret, andt; denote the moments of the initial and current mesments;At is the given step of measurements;

is the measurement number.
Let us choose a conditional midpoint on the measare time interval front, to ty:

ty +t
2
where p =2p’ < N;. The specific values ofp’ and N, are determined below.
In what follows we operate with the valugsandt,_; symmetric with respect to the midpoint.
From (5) and (6) it follows that:

t. =

=ty + p'At, (6)

- p-j . —
=Pt =2, -

that is why the method of solving the main probigiren below is called the method of equidistantmi

t,-; andt; are distanced equally frort, .

Assuming that the measuremem(t) can be given analytically by (4) we write down thiferences and sums of
measurements for equidistant points:

N —_ .
poj =0 =y = Ty(piog) = R AE Ao Sin(‘“ktp—j +¢’k) R- Z'Ak Cht sm(a&t +¢’k)
k=1
N
=Y Al M sin(@t, ) -e ™ sin(ag; +u ) |: @)
k=1

Apoj +0} = Qo) F (i) = 2R+kZZ‘1A'<[e_ﬁktp‘j sin(aty-; +i ) +e X sifa; +z//k)]. ®)
The dependence df andt,_; on the midpoint, is given by:
t, =t + jAt =ty + p'At—(p'~ j)At =t —(p' - j)At
th-j =to+(P=j)At =ty + p'At+(p' —j)At =t +(p - j)At. 9)
We transform the expression in square bracketg)ingingthe Euler formulae;
g e sin(cq(tp_j +(,//k)—e_ﬁktj sin(cq(tj +¢/k) = exp B, B ('~ §)At] sifagt, +a (p' - j) A+ |-
_eXp[_:Bktc +6(p' - J')At} sir{cq(tc —a (p'-j)At +¢/k:| = exiﬁ_ﬂktc o AC j)At]x

X{exp[(qtc+q( - j)at+y) ] ex;{ ate +a (p —j)At+(//k)(—i)]}?li— exp-Bt. + B (p' - j)At].

{expl:(cq(tc—cq((p = j)at+e )i |- exi (ate (' = ) Dt+¢ ) (- )]}Ziz
=exp| ~Ade +i(@te + i }DS"{ P - 0) Ot (e +iB) [+ exp-Bite —i (et —¢i) | Osif(p - §) At (@ —i5) | =
a sin[ % (p- ] Atj+ak sin x (p' - j)At], (10)

Wherea&=e><p[-/3ktc+i(a&tc+wk]: =exp| At —i(@de +¥i) |3 X =@ +iB % =~ pis the num-
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ber of the measurement corresponding to the camditimidpoint.

]

Apparently the coefficientsy, a;, X, X, are independent of the numbg¢rand, hence, are the same for any equi-
distant pointsa,,_; anda; (j=1,2,.).
By analogy transform the expression in the squeaekets in (8):
e e Bin(cq(tp_j +(,//k)+e_ﬁ"tj Eisin(chj +(//k) =by co$x (P~ j)At]+by cosx (p'-j)At], (12)
whereb, =-ia,, b =ia".
In the case of zero coefficienfs, =0 (10) and (11) are simplified to become:
sin(aty ; )~ sin(aat; +0) = 200kt +) sif (p'- 1)) = sing(p' -
sin(@aty |+ )+ sin(axt, ) = 2sifaat, +41) cosy (p'- 1)8t =87 oo (- )AL,
where: = 2co{at, +¢ ), B = 2sin(at, +4). (a)° +(50) =4, X =@
Clearly, the coefficientsy, by, X, do not depend on the number in this case as well.
Comparing (10) and (12) we conclude that in thélmatsess, #0 and 5, =0 these expressions are of the same

j)At; (12)
t (13)

type with the only difference that fof, #0 we have two summands of the forap sinx, ( p' - j)At and for 8, =0
only one such summand, wheag and x, are unknown valuesa( =a,, a Or & ; X, = X, X OF X ).
Similarly, (11) and (13) are of the same folyncosx, ( p - j)At with the unknownb, and x, , moreover, the co-

efficients b, can be written in terms dd, . By the above argument, substituting (10) and {d1}) and (8) we get:

N N
Om=Eay—a; =) Asinx (p' = j)At; ny=a,;+a; =2R+) B, cosx (p'—j)At, (14)
k=1 k=1

where A =A@, B =Ab, = f(A).
Form (8) and (10) it follows that for each summarfidhe form Aze_ﬁktc sin(cq<tC +(//k) there are two correspond-
ing summands of the formﬁksinxk(p'—j)At in the first formula of (14) and two summands ok tform

By cosxk(p'— j)At in the second formula of (14). Thus each decagingsoid is reduced to two complex sinusoids
(cosinusoids) with complex amplitudes. From (12)d afi3) we have that for each summand of the form
A sin(cq<tC +¢/k) there is one corresponding summand in (14).

Hence, in (14) the numbed depends on the expected measurement compositibacarals:

N =2n+n,, (15)

where n; is the number of the decaying sinusoidg,is the number of the sinusoids that do not denaiimula (4),
which is given a priory.

Consequently, formulae (14) derived above con@lih+1 unknowns:R, A, X, all of which are independent of

the measurement number.
To simplify the further argument we introduce tb#dwing notations:

Ax =xAt, p'—-i=m, (16)
then the differences and sums of measurementeduoees to the form:
N N
O EQyam = Ayom = O ASIN(AX ) 1y = Ay =~ Ay = 2R+ D" By cog Ax, ) (17)
k=1 k=1

with the coefficientsA, , B, introduced in (14).

In what follows we omit the prime symbol from thetations a, and x, keeping in mind that these coefficients
are the same as given by (19) depending on the vl .

Thus we arrive at:

N
O E Qe = Ay = D, Acsin(Ax, [in); (18)
k=1
N
Tm = ap’+m +ap’—m =2R+ z Bk COiAXk En) ’ (19)
k=1

where the unknown®, A, and Ax, do not depend on the measurement numBgrcan be written in terms of,
(see formulae (14)).
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To identify the unknowns let us consequentially set1, 2, 3,...,N + 2in (18) and write down the following sys-
tem of equation:

5m=iA(sin(Axk ) (m=1,2,3,..N+ ), (20)
k=1

where A, are the coefficients to be identified.

A non-trivial solution A, exists if the following determinant equals zerp [2

Inn SIN[(N+DDx ] sif (N+JAx |
On sin(NAx,) sin(NAxy )
Dy | =, (21)
5, sin( 24x,) sin( 2y )
o) SinAx, SinAxy
which can be reduced to the form:
oMy YN
oSN yNt Vi
D(N) _ . ¢ siesanees . _ O ’ (22)
PNy i
JéN) yl .......... yN
N1 1

where y, =cosAx,, and Jr(nN) is given by the formula:

o =25 (m=1,2,..0;0=23,..N),
which is derived by transformin®, as shown below.

We apply the following transformations to the detgrant D; given by (21) [5].

We first subtract its third row from the first ortee forth row from the second one, and so onwesubtract the
(n+2) —th row of the determinant from its —th row; the last row but one is kept unchangedtaedast one is multi-
plied by 2.

Then in then —th row of the determinant we get:

sin(N + 2-n)Ax, = si(N + 2-n- 2Ax, = 2cobN —n+ )JiAx, O sif, .

We reduce each column sinAx, (assuming thaf\x, # 0, krr).

Thus,

5&111 CoSNAX oo CONAXy

s cog(N-JAx .. cofN-— JiAx,

where Y =5, - 3,, (m=3,4,..N+1, o =5,, 6 =24,
Next we add successively the first row of the dateant with its third row, the second row with tleeth row, and
so on up to the sum of tHeN —1) - st and(N +1) - st rows; whereby we get in the-th row:

cog(N + 1-n)Ax, + cogN+ tn- PAx = 2cdN-n)Ax, cos,.
Multiplying the N —th and (N +1) - st rows by 2 we then reduce each row of the detemtiby 2:
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where y, =cosax, (k=1,2,...N); g2 = o +o, (m=3,4,..,N+1; ol =28, 51 = 2808
Summing the determinant rows as above up to the cfutime (N —2)— nd and N —th rows and multiplying the

rows with numberaN, N -1 and N +1 by 2, after reducing all the columns by 2 we ar@ the following equation:
5@1 Vi co{(N - 3Ax1:| YA coE(N - )?AXN]
5 2 cog (N-3ax ] ... y& cof(N- Rax ]

p{® =| o2 Y2 v =0,
o V2 v
5§3) Y1 YN

ISR

©
=
-

wheredd =52 + 5, (m=4,5..N+1; 3 = 24(2 (m=1,273.

m

By repeating the procedure we get:

AW W

Y Y
Dl(N)=;3{NIS ....... y12 ....... ...... yﬁ 0 23)

5£N) Y1 YN

N1 1

where

S =M+ (m=r+1,. ,N+D); (24)
o) =25 (m=1,2,..0;0=23,..N), (25)

with y, =cosAx,, and Jr(nN) given by formulae (24), (25).
Expanding determinant (23) by the elements ofiits €olumn and dividing the equation obtained g tofactors
of the elementa',(“'\i)l we have:
N
N N
Z zidl(\H)l—i = _Jl(\H)l' (26)

i=1
where

7 =(-1) %1 (i=12.3..N), 27)

1

and the determinant®;,, (i =0,1,2,3,...N) are derived by deleting théi +1) - st row from the table:
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V. YN

i Vi

......................... ) (28)
VR Yy
1 ... 1

The determinanD; obtained from table (28) by deleting its first réaMn fact the Vandermonde determinant and

can be computed by the formula [2]:

Dy = (¥2=¥2) (Y2 ¥a) - (Vi W (V2= ¥ - {n- - ) (29)
The determinanD, does not vanish if
Vi Y for kzm (k,m=1,2,..,N). (30)

Hence, if condition (30) holds then system (2@eiuces to a single linear equation (26)Nnunknownsz .
By analogy one reduces the system of equationsnglotdrom (19) form equal to0,1, 2,...N :

qm:2R+incos(Axk ) (m=0,1,2,..N), 31)
where the coefficient8, are unknown. A nko;-trivial solutioB, exists if the following determinant is zero:
NN —2R cofNAX) ...  cofNAxy)
Nn-1—2R cod (N=3Ax | ... cos(N- Jiaxy |
D [ -0
n, - 2R coy 2\x,) cob 2xy )
m—-2R COsAX, COAXy
N, -2R 1 1
Arguing as above, the determinadj can be reduced to the form:
pN_NR YN N
aM -2V Ny
DIV ={ e, = (32)
" -2"R oy Y
AN -NR 1 1
where
D =Y gl (m=r, 041, N); b =208 (m=1,2,...050= 2,3,..N). (33)
We expand determinant (32) following the same pilaoce as for determinant (22) above to get:
>z (U(N_i -2" R) = —(U(NN) -2 R) : (34)
i=1

where z are given by (27).

Introducing the notationg, = 6#,“1)14; Q =/7(,\]N_)i for simplifying the representation, we reduce egua (26) and
(34) to the form:
N N
Z;z”ﬁi =@y, Z;Z(Q‘ZNR)=—(QO—2NR). 513
= i=
Thus constructing the linear combinations of défeges (18) and sums (19) of measurements at eguitdgints
by formulae (25) and (33) we arrive at system afegipns (35) in N +1 unknowns, namelyN unknown values of;
and the unknown constafR. This transformation has place if inequality (3@)ds, which sincey, =cosAx, (where
Ax, =x Ot , x = +iB,) can be written as followscosx At 2 cox, At (k#zm, k=1,2,...N, m=12,..N)or,
otherwise:
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X £ Xm
that is the analytical form of measurements (4)sdu& contain same frequency sinusoids and theureaent stepit
must satisfy inequality (36).
In order to determine all the unknownhl (values ofz and the constanR) from system (35) it needs to be ex-

At #

X EXn (M=0,1,2,..;kzmk= 1,2, .N), (36)

panded to contailN +1 equation. This can be done by using equation (86}times, shifting the conditional midpoint
by one stepAt to the right each next time, i.e.:

N
> z¢s=-¢ys (5=0,1,2,..N- ],
i=1

where g, o =@, @0 =@o from (35); 4 s = Onsroiss, Pos = 5#1’\1)1+s’ Jr(nN) are given by (25)z is given by (27).

Hence, the expanded system of equations for igemgifN unknownsz and Ris written in the form:

N N
> 26.s=-¢os (5=0.1,2,..N-}; Y z(Q-2"R)=-(Q-2"R). (37)
i=1 i=1

All the valuesz can be found from the firsN equations of system (37) in case the system detannis non-
zero:
o P20 [N
D= P11 P21 - OIn, 20, (38)

¢1,N—1 ¢2,N—1 ¢N

which has place for the actual measurements.
Then from the last equation of (37) we fif:
N

220 +Q
R= 'le— . (39)
*[Ea
i=1
This concludes the solution of the main problerthefmethod of equidistant points.
Apparently, to solve the main problem by formul8&)( (38) one needs the measurerna(lt) taken at3N + 2
points, whereN =2n, +n, according to (15), i.e. the number of measuremeetsis to be greater than the number of

the unknowns in the measurement analytical forrtdila
The sufficient number of measurementsNg =3N + 2, and the measurement corresponding to the conédlitio

midpoint satisfiesp’'= N + 2.
The solution to the secondary problem can be defyedeterminingz from (37) and subsequent computation of

y; (1=1,2,3,...N), which are in fact the roots of the equation:

N ,
y (1) zy =0 4]
i=1
The values ofy; being determined we then finfix; = x;At and can computg and ¢, by formulae (10). We

also note thatA, and B, can be identified form (20) and (31), and theiruesl can then be used to compute the ampli-
tudes A, and phase#, of the sinusoids in (4). Since this problem is inathe focus of the present paper we limit our-
selves here to just outlining the ways of it's sy

Prospects of further research. The further development of the methods of iderdifizn of system parameters
comprises:
— development of the algorithms for solving the m@aioblem in the case when the process is givéneiriorm:

N
a=R+> A (t)e A sin(at+y, ),
k=1
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where A, (t) is the polynomial corresponding to the multiple roots of the differential equation considered;

— development of the efficient methods for solving the secondary problem;

— improvement of the algorithms aimed at reducing the number of the measurements required;

— construction of the error correction algorithms providing the improvement in accuracy while reducing the infor-
mation retrieval time.

Studying these points provides a sufficient solution for a wide range of practical problems.

Conclusions. In this paper a mathematical substantiation emthputational formulae of an innovative finite-step
computational method are presented. The algorithm developed is efficient for solving both main and secondary prob-
lems. When solving such problems for specific systems their respective features need to be taken into account, which es
sentially improves the accuracy of the results as well as the processing time. The results and computational formulae
proposed can be used for solving similar problems of identification of various automatic control systems.
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VJIK 519.6
€.J1. XYPIEH
TEOPISI IOBY1OBU ONEPATOPIB IHTEPIOJISILIT I3 3ATAHUMU MPOEKLIAMU

Oneparopu anpokcumMaltii GyHKIIi ABOX 3MiHHHUX, IO {HTEPIIOMIOIOTH ii CBOIMU MPOEKLisAMU M0 M HemapaneabHUX NPSIMUX, HEAOCTATHBO JOCTIHKY-
BaJIMCS B HAYKOBIl JliTepaTypi. Y Toif xe yac 11 TeopeTHdHa npobiieMa BUKIIMKAE MPAKTHYHUIT iHTEpeC, KOJIM JaHi NpoeKwiil (IHTerpanu B3I0BXK Ji-
HI)BUXOIATH i3 KOMIAKTHOTO CKaHepa Tomorpadii. Y po6oTi moOyaoBaHHil orepaTop iHTEprosLii, K1 TOYHO BiJHOBIFOE TOJIHOMH CTETCHS
M —1. Metox nociimKyBaBcs JUlsl BUMAJAKy CUCTEMU B3aEMHO MEPHEHIMKYIIPHUX MPAMUX Ta UL TPhOX HemapaieabHUX NEPEeTUHHUX NMpsMUX (CTo-
piH TPUKYTHHKA). 3HANACHO iHTErpabHe MPEACTABICHHS 3IMIIKOBOrO YlieHa HaOMmKeHHs Aud)epeHIiiHoBHUX (YHKIII OTPMMaHUMK OMEPaTOpaMH.
3anponoHOBaHMiT METOJL I03BOJISIE POSLIMPUTH TEOPIO Ta IIPAKTHYHE 3aCTOCYBaHHs KOMIT I0TEpHOI ToMorpadii.

KumiouoBi c;10Ba: koM 'totepHa TomMorpadisi, OriepaTtopy iHTEprosLii 3 BiJOMUMU MPOEKLIIMY, 3aINIIOK HAOIMKEHHS, apOKCHMALlisl, IPOeK-
Liii B3I0BX JIHIH.

E.JI1. XYPJEH
TEOPUSA MOCTPOEHUS OMEPATOPOB UHTEPIOJISILMU C 3AJAHBIMU IMPOEKLIUSIMU

OnepaTops! anmnpokcuManuy QYHKIMY ABYX MEPEMEHHEIX, KOTOPBIE MHTEPIOIMPYIOT €6 CBOMMHM IPOSKLMAMHU 110 M HemapaulebHBIX MPSMBIX, He-
JIOCTATOYHO UCCIIENOBATIUCH B HAYYHOIl UTepaType. B To ke Bpems 5Ta TeopeTuueckas npoOemMa BbI3bIBAET IPAKTUUECKUI UHTEPEC, KOTa JaHHbIE
NpOEKIMK (MHTerpatbl BJOJIb JIMHUI) BHIXOJAT U3 KOMITAKTHOTO cKaHepa ToMorpaduu. B pabote ocTpoeH onepaTop MHTEPOIIALMY, KOTOPbIH TOYHO
BOCCTAaHABJIMBACT MONMHOM cTeneHn M —1. Metox mccnenoBaics At ciydas CHCTEMbl B3AUMHO MEPHEHINKYIIAPHBIX NPSMBIX U JUTS TpeX Hemapa-
JIENBHBIX MEPECEKAIOIMXCS NPSIMBIX (CTOPOH TpeyrojibHuKa). HaliieHo MHTerpaibHOE HMpeICTaBIeHHE OCTaTOUHOTO WieHa NpUOMmKeHus tuddepeH-
LUPYeMbIX (DYHKIUI TOTy4eHHBIMHU orniepaTopaMu. [1peanokeHHbI METO/ TTO3BOIISIET PACIIMPHTH TEOPHIO U MPAKTUUECKOE MPHUMEHEHHE KOMITBIOTEP-
HOI ToMorpauu.

Ki1i0ueBble ¢10Ba: KOMIbBIOTEpHAs ToMOrpadus, onepaTopbl HHTEPIOSLHU C U3BECTHBIMU IPOECKLMAMHU, OCTATOK MPUOJIIKEHHUS, allpOKCH-
Maryst, MPOEKIMH BIOJb TMHUMH.
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