POST-CYCLIZATION OF UGA BISAMIDES BASED ON PYROLYL-β-CHLOROVINYLALDEHYDE

V.V. Ananeva¹, V.A. Vereshchak¹, E.I. Mikhedkina¹, I.I. Melnik¹, A.I. Larina¹, A.V. Tsygankov^{1,2}, V.A. Chebanov²

¹ National Technical University 'Kharkiv Polytechnic Institute', ² Division of Functional Materials Chemistry, State Scientific Institution 'Institute for Single Crystals' of NAS of Ukraine, Kharkiv

The classic multicomponent Ugi reaction today is a powerful tool for creating libraries of organic substances, among which there may be new biologically active compounds and new components of functional materials. A special role is played by so-called post-Ugi reactions, which may include, for example, various postcyclizations or subsequent modification of functional groups and amide bonds in Ugi products.

The combination of pyrrole-containing α,β -unsaturated aldehyde **1**, which has a Chlorine atom in the β -position, with convertible 2-nitrobesilisocyanide, *para*-substituted anilines and monochloroacetic acid as the smallest building blocks in the four-component reaction leads to the formation of bisamides Ugi **2a-d** (Scheme 1) and creates further favorable conditions for possible post-transformations.

 $R = OCH_3$ (a), CH_3 (b), CF_3 (c), Br (d)

Under the conditions of acid hydrolysis of bisamides **2a-c** in acetonitrile or methanol, in the presence of an excess of concentrated hydrochloric acid, bipyrrole **3** is formed instead of the expected carboxylic acid **4** (Scheme 2).