

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL TECHNICAL UNIVERSITY

"KHARKIV POLYTECHNIC INSTITUTE"

O. Zakovorotniy

O. Lipchanska

FUNDAMENTALS OF COMPUTATIONAL

INTELLIGENCE

Part 1

Laboratory workshop

for carrying out laboratory work

for full-time and part-time students

by speciality Computer Engineering and Computer Science

 Approved by

 editorial and publishing

 council of the NTU "KhPI" University,

 protocol № 12 dated 29.12.2021.

Kharkiv

NTU "KhPI"

2022

UDC 004.89

ББК 32.973-02

 З 19

Reviewers:

V. D. Kovalov, Doctor in Technical Science, Professor, Rector of Donbass State

Machine-building Academy, Laureate of the State Prize of Ukraine in the field

of science and technology;

G. F. Kryvulia, Doctor in Technical Science, Professor, professor of the

Computer Engineering Design Automation department,

Kharkiv National University of Radio Electronics.

 Наведено теоретичні відомості про пакет MATLAB та способи побудови в ньому

нечітких множин, алгоритмів нечіткого виведення й нечіткої кластерізації, нечіткого

контролера, генетичних алгоритмів і нейронечітких гібридних мереж. Теоретичний

матеріал підкріплений великою кількістю прикладів із використання описаних нечітких

систем.

 Призначено для студентів денної та заочної форм навчання за напрямом

"Комп'ютерна інженерія" й "Комп'ютерні науки".

Іл. 20. Табл. 8. Бібліог. 11 назв.

 Zakovorotniy O. Fundamentals of Computational Intelligence /

З 19 O. Zakovorotniy, O. Lipchanska: Laboratory workshop. – Kharkiv: NTU

 "KhPI", 2022. – 160 p. – In engl. language.

ISBN 978-617-578-129-6

 Theoretical information about the MATLAB package and methods for constructing

fuzzy sets, fuzzy inference and fuzzy clustering algorithms, a fuzzy controller, genetic

algorithms and neuro-fuzzy hybrid networks in it is given. The theoretical material is

supported by a large number of examples on the use of the described fuzzy systems.

 Designed for full-time and part-time students in the direction of "Computer

Engineering" and "Computer Science".

 Pict. 20. Tabl. 8. Referenc. 11 names.

 UDC 004.89

 ББК 32.973-02

 ISBN 978-617-578-129-6  O. Zakovorotniy,

 O. Lipchanska, 2022

3

INTRODUCTION

 The Fuzzy Sets Theory was developed in 1965 when professor Lotfi

Zadeh of the University of Berkeley published the fundamental work Fuzzy Sets

in the Information and Control journal. The adjective "fuzzy" was included into

the title of the new theory in order to distance itself from classical crisp

mathematics and Aristotelian logic, which operate with crisp concepts: "belongs

– does not belong", "true – false". The concept of a fuzzy set was born by

L. Zadeh as dissatisfaction with the mathematical methods of classical systems

theory, which forced his to achieve artificial accuracy, inappropriate in many

systems of the real world, especially in the so-called humanistic systems that

include people"

 The beginning of the practical application of fuzzy sets theory can be

considered 1975, when Mamdani and Assilian built the first fuzzy controller to

control a simple steam engine. In 1982, Holmblad and Ostergad developed the

first industrial fuzzy controller, which was implemented in the control of the

cement firing process at a plant in Denmark. The success of the first industrial

controller based on fuzzy linguistic rules "If – then" led to a surge of interest in

fuzzy set theory among mathematicians and engineers. Somewhat later,

Bartholomew Kosko proved the Fuzzy Approximation Theorem, according to

which any mathematical system can be approximated by a system based on

fuzzy logic. In other words, with the help of natural language statements-rules

"If – then", with their subsequent formalization by means of fuzzy set theory, it

4

is possible to accurately reflect an arbitrary relationship "inputs - output"

without using the complex apparatus of differential and integral calculus,

traditionally used in management and identification.

 Systems based on fuzzy sets have been developed and successfully

implemented in such areas as process control, transport management, medical

diagnostics, technical diagnostics, financial management, stock forecasting,

pattern recognition, etc. The range of applications is very wide - from video

cameras and household washing machines to air defense missile guidance and

control of combat helicopters. Practical experience in the development of fuzzy

logical inference systems shows that the time and cost of their design is much

less than when using the traditional mathematical apparatus. This ensures the

required level of robustness and transparency of models.

5

Laboratory work 1

BASIC CALCULATIONS IN MATLAB PACKAGE

 The purpose of the laboratory work is to obtain and to consolidate

knowledge, to form practical skills in working with the MATLAB package

when calculating algebraic expressions using built-in mathematical functions.

1.1. Summary of theory

 1.1.1. MATLAB Workspace

 MATLAB was created by Math Works over fifteen years ago. The work

of hundreds of scientists and programmers is aimed at constantly expanding its

capabilities and improving the underlying algorithms. Currently MATLAB is a

powerful and versatile tool that allows to solve problems which human

experience during their activity.

 MATLAB 6.x, MATLAB 7 workspace has a convenient interface for

accessing many of the MATLAB auxiliary elements.

 When you start MATLAB 6.x, the screen displays the workspace shown

in Fig. 1.1.

 The Workspace contains the following elements:

 – menu;

 – toolbar with buttons and a drop-down list;

 – a panel with Launch Pad and Workspace tabs, from which you can get

easy access to various ToolBox modules and the contents of the working

environment;

 – a panel with the Command History and Current Directory tabs,

designed to view and recall previously entered commands, as well as to set the

current directory;

6

 – Command Window panel with the command line in which the blinking

cursor is located;

 – status bar.

Fig. 1.1. MATLAB 6.x workspace

 All commands described in this lab should be typed at the command

line. Symbol » means command line prompt. You do not need to type the

character that denotes in the examples. To view the work area, it is

convenient to use the scroll bars or the <Home>, <End> keys to move left or

right and <PageUp>, <PageDown> to move up or down. <Up>, <down>,

<rigth>, <left> keys using will be discussed additionally. If the command

line with the blinking cursor disappeared after moving around the workspace

of the Command Window, just press <Enter>.

 It is important to remember that any command or expression should end

with the <Enter> key in order for MATLAB to execute that command or

evaluate the expression.

7

 Comment 1

 If some of the described panels are missing in the MATLAB 6.x

workspace, then select the appropriate items from the View menu: Command

Window, Command History, Current Directory, Workspace, Launch Pad.

 1.1.2. Arithmetic calculations

 MATLAB's built-in math functions let you find the values of various

expressions. MATLAB provides the ability to control the result output

format. Commands for evaluating expressions have a form common to all

high-level programming languages.

 Type 1+2 at the command line and press <Enter>. As a result, the

MATLAB Command Window displays the following:

» 1+2

ans =

 3

What did MATLAB do? First, it calculated the sum 1 + 2, then wrote

the result to the special variable ans and printed its value, equal to 3, to the

command window. A command line with a blinking cursor is below the

answer. It indicates that MATLAB is ready for further computation. You can

type new expressions at the command line and find their values.

 If you want to continue working with the previous expression, for

example, calculate (1+2) / 4.5, then the easiest way is to use the already

existing result, which is stored in the ans variable. Type ans / 4.5 in the

command line (a point is used when entering decimal fractions) and press

<Enter>, it turns out:

» ans/4.5

ans =

8

 0.6667

Comment 2

The form of the calculations result is displayed depends on the output

format set in MATLAB. The following explains how to set the basic output

formats.

 1.1.3. Сalculation result output formats

 The required output format is defined by the user via the MATLAB

menu. Select Preferences from the File menu. The Preferences dialog box

appears. To set the output format, make sure the Command Window item is

selected in the left panel list. The format is set from the Numeric format drop-

down list of the Text display panel.

 We will analyze only the most frequently used formats. Select short from

the Numeric format drop-down list in MATLAB 6.x. Close the dialog by

clicking the <ok> button. The short floating point format short is now used for

displaying the results of calculations, in which only four digits after the

decimal point are displayed on the screen. Type 100/3 at the command line and

press <Enter>.

 The result is output in the short format:

» 100/3

ans = 33.3333

 This output format is retained for all subsequent calculations, unless a

different format is specified. Note there is a possible situation in MATLAB

when displaying too large or small numbers, the result does not fit into short

format. Calculate 100000/3, the result is displayed in exponential form:

» 100000/3

9

ans =

 З.ЗЗЗЗе+004

 The same form will happen when finding 1/3000:

» 1/3000

ans =

 З.ЗЗЗЗе004

 However, the original setting of the format is preserved during further

calculations. The result output will again be in short format for small

numbers.

 In the previous example, the MATLAB package displayed the

calculation result in exponential form. The entry 3.3333е004 means

3.3333*104 or 0.00033333. Similarly, you can type numbers in expressions.

For example, it is easier to type 10e9 or l.0e10 than 1,000,000,000, and the

result will be the same. A gap between digits and e symbol is not allowed

when entering, because this will result in an error message:

» 10 е9

??? 10 е9

Missing operator, comma, or semi-colon.

 If you want to get the result of calculations more accurately, then you

should select long from the drop-down list. The result will be displayed in

long floating point format with fourteen digits after the decimal point. The

short e and long e formats are designed to output the result in exponential

form with four and fifteen digits after the decimal point, respectively.

Information about formats can be obtained by typing the command help with

the argument format at the command line:

10

» help format

 A description of each format appears in the command window.

 You can set the output format directly from the command line using the

format command. For example, to set a long floating point format for

outputting the results of calculations, enter the format long e command at the

command line:

» format long e

» 1.25/3.11

ans =

 4.019292604501608е001

 Note that the help format command displays the format names in

capital letters. However, the command to be entered is in lowercase letters.

This feature of the built-in help takes some getting used to. MATLAB

distinguishes between uppercase and lowercase letters. Attempting to type the

command in capital letters will result in an error:

» FORMAT LONG E

??? FORMAT LONG.

Missing operator, comma, or semi-colon.

 For better readability of the result, MATLAB displays the result of the

calculations missing a blank line after the evaluated expression. However,

sometimes it is convenient to place more lines on the screen by selecting the

compact (File, Numeric display) button from the drop-down list. Adding blank

lines is provided by selecting loose from the Numeric display drop-down list.

11

 Comment 3

 MATLAB performs all intermediate calculations in double precision,

regardless of the set output format.

 1.1.4. Elementary functions using

 Suppose you want to evaluate the following expression:

)3,3 (tg)78,3 cos45,2(sin)3,11(ln 3,05,2 /e  .

 Enter this expression on the command line according to MATLAB

rules and press <Enter>:

» ехр(2.5)*lоg(11.3)^0.3

sqrt((sin(2.45*pi)+cos(3.78*pi)}/tan(3.3))

 The answer is displayed in the command window:

ans =

 -3.2105

 When entering the expression, the built-in MATLAB functions are used

to calculate the exponent, natural logarithm, square root, and trigonometric

functions. What integrated elementary functions can be used and how to call

it? Type the command help eifun in the command line, and a list of all built-in

elementary functions with their brief description is displayed in the command

window. Function arguments are enclosed in round brackets; function names

are in lowercase. To enter π, just type pi at the command line.

 Arithmetic operations in MATLAB are performed in the usual order

common to most programming languages:

 exponentiation ^;

12

 multiplication and division *, /;

 addition and subtraction +, .

 Use round brackets to change the order of arithmetic operators

execution.

 If now you want to calculate the value of an expression similar to the

previous one, for example

23,05,2))3,3 (tg)78,3 cos45,2((sin)3,11(ln /e  ,

it is not necessary to type it again on the command line. You can take

advantage of the fact that MATLAB remembers all the commands you enter.

To re-enter them into the command line, use the <up>, <down> keys.

Evaluate the given expression by following these steps:

1. Press the <>, key, and the previously entered expression will

appear in the command line.

2. Make the necessary changes to it, replacing the minus sign with plus

and the square root for squaring (use the <right>, <left>, <Home>, <End>

keys to move along the line with the expression).

3. Calculate the modified expression by pressing <Enter>.

It turns out

» ехр(-2.5)*log(11.3)^0.3+

((sin(2.45*pi)+cos(3.78*pi))/tan(3.3))^2

ans =

 121.2446

 If you need to get a more accurate result, then you should execute the

format long e command, then press the <> key until the required expression

appears in the command line, and calculate it by pressing <Enter>

13

» format long e

» exp(-2.5)*log(11.3)^0.3+

((sin.(2.45*pi)+cos(3.78*pi))/tan(3.3))^2

ans =

 1.212446016556763e+002

 You can display the result of the last calculated expression in a different

format without recalculation. Change the format with the short command, and

then see the value of the ans variable by typing it in the command line and

pressing <Enter>:

» format short

» ans

ans =

 121.2446

 There is a convenient tool for invoking previously entered commands

such as the Command History panel in the MATLAB 6.x working area. It

has the history of commands. The command history contains the time and

date of each MATLAB 6.x session. To activate the Command History

window, select the tab with the same name. The current command in the

window is shown with a blue background. If you click on any command in

the window with the left mouse button, then this command becomes the

current one. To execute it in MATLAB, you need to double-click or select

a line with a command using the <up>, <down> keys and press the

<Enter> key. An extra command can be removed from the window. To do

this, make it current and delete it using the <Delete> key. You can select

several consecutive commands using the key combination <Shift> + <up>,

<Shift> + <down> and execute them using <Enter> or delete with the

<Delete> key. Sequential commands can be selected with the left mouse

14

button while holding down the <Shift> key. If the commands do not follow

one after another, then to select them, use the left mouse button while

holding down the <Ctrl> key.

 When you right-click in the Command History area, a pop-up menu

appears. Selecting the Сору item will copy the command to the Windows

clipboard. With Evaluate Selection you can execute the marked group of

commands. Use the Delete Selection item to delete the current command. Use

the Delete to Selection item to delete all commands up to the current one, use

the Delete Entire History item to delete all commands.

 Some exceptional situations are possible in calculations, for example

division by zero, which lead to an error in most programming languages.

When a positive number is divided by zero in MATLAB, inf (infinity) is

obtained, and when a negative number is divided by zero, inf (minus infinity)

is obtained and a warning is issued:

» 1/0

Warning: Divide by zero.

ans = Inf

 Dividing zero by zero results in NaN (not a number) and also generates a

warning:

» 0/0

Warning: Divide by zero.

ans = NaN

 When calculating, for example sqrt(1), no error or warning is raised.

MATLAB automatically switches to complex numbers:

»sqrt(1.0)

15

ans = 0 + l.0000i

 1.1.5. Working with complex numbers

 When typing complex numbers in the MATLAB command line, you

can use either i or j. The numbers must be enclosed in round brackets when

multiplying, dividing and exponentiating:

»(2.1+3.2i)*2+(4.2+1.7i)^2

ans =

 18.9500 + 20.6800i

 If you do not use round brackets, then only the imaginary part will be

multiplied or exponentiated, and the result will be incorrect:

» 2.1+3.2i*2+4.2+1.7i^2

ans =

 3.4100 + 6.4000i

 To calculate the complex conjugate number, an apostrophe is used,

which should be typed immediately after the number, without a gap:

» 23i'

ans =

 2.0000 + 3.0000i

 If you need to calculate a complex conjugate expression, then the source

expression must be enclosed in round brackets:

»((3.2+1.5i)*2+4.2+7.9i)'

ans =

 10.6000  10.9000i

16

 MATLAB allows complex numbers to be used as arguments to built-in

elementary functions:

» sin(2+3i)

ans =

 9.1545  4.1689i

The construction of a complex number from its real and imaginary

parts is performed using the complex function:

» complex(2.3, 5.8)

ans =

 2.3000 + 5.8000i

 How do you know which built-in elementary functions can be used and

how to call them? Type the command help eifun in the command line, and a list

of all built-in elementary functions with a short description is displayed in the

command window.

1.2. Individual tasks

 1. According the number N in the group register list, written in the form

N = СМ, where С is the rank of tens, М is the units rank, calculate the

expression given using the table 1.1 and table. 1.2.

 2. Replace the sign of the arithmetic operation of multiplication by the

sign of the addition operation in the expressions of table.1.1 and table 1.2 and

calculate new expressions without fully typing them on the command line,

taking advantage of the fact that MATLAB remembers the entered commands.

17

 3. Get the results of calculations of point 2 of the individual task in the

short and long formats.

 4. Get a complex number (a + bi), where a, b are respectively, the number

of letters in your first and last name. Also define:

 complex conjugate number to number (a + bi);

 calculate the square of the complex conjugate number;

 calculate the product of the source complex number and the complex

conjugate number;

 calculate the expression sin(a + bi) + cos(a  bi).

 5. Design a laboratory report.

 Table 1.1 – Individual task for the units rank М of the number in group

register

The units

rank М of the

number in

group

register

0 or 5 1 or 6 2 or 7 3 or 8 4 or 9

Expression
DB

CA /



52

ACD

BA



 7,12

C/D

CBA
/ 51



3 5

73

AB

DC /





4

5

BC

DA





 Table 1.2 – Individual task for the rank of tens С of the number in group

register

The rank of

tens С of

the number

in group

register

A B C D

0 2))(sin(N)2ln(N)exp(2N/N BA

1 4))(cos(N 24))(ln(N 1)exp(N CA

2 2))(tg(N 4))(log(N)exp(1 N/ CB /

3 4))(ctg(N)9log(3  NN)exp(N/N )(BA/C 

18

Laboratory work 2

BASIC CALCULATIONS IN MATLAB PACKAGE

USING VARIABLES AND VECTORS

 The purpose of the laboratory work is to obtain and to consolidate

knowledge, to form practical skills in working with the MATLAB package

when calculating using variables and vectors.

2.1. Summary of theory

 2.1.1. Using Variables in MATLAB

 MATLAB provides the ability to work with variables as all programming

languages do. Moreover, the user does not have to worry about what values the

variable will take (complex, real, or only integers). In order to assign, for

example, the value 1.45 to the variable z, it is enough to write z = 1,45 on the

command line. MATLAB will immediately display the value of z:

» z = 1.45

z =

 1.4500

 The equals sign is used as an assignment operator. It is often not very

convenient to get the result after each assignment. Therefore, MATLAB

provides the ability to terminate an assignment statement with a semicolon to

suppress the output to the command window. Variable name can be any

sequence of letters and numbers with no spaces, starting with a letter. Lowercase

and uppercase letters are different, for example, MZ and mz are two different

variables. The number of characters MATLAB can accept in a variable name is

31.

19

 As an exercise in using variables, calculate the value of the following

expression:

   .75,2th 75,2 tg4,3ln 3,1sin 75,2th 75,2 tg4,3ln 3,1sin 

 Type the following sequence of commands (note the semicolon in the first

two assignment operators to suppress the output of intermediate values on the

screen):

» х = sin(1.3*pi)/log(3.4);

» у = sqrt(tan(2.75)/tanh(2.75));

» z = (х+у)/(х-у)

Z =

 0.0243 - 0.9997i

 The last assignment operator is not terminated with a semicolon in order

to get the value of the initial expression immediately.

Of course, you can enter the whole formula at once and get the same

result:

»(sin(1.3*pi)/log(3.4)+sqrt(tan(2.75)/tanh(2.75)))/…

(sin(1.3*pi)/log(3.4)-sqrt(tan(2.75)/tanh(2.75)))

ans =

 0.0243 - 0.9997i

 Please note that the first entry is more compact and clearer than the

second! In the second version, the formula did not fit in the command window

on one line. It had to write it down in two lines. For this, three dots are put at the

end of the first line.

20

 Comment 1

 To enter long formulas or commands in the command line, put three dots

(in a row, without spaces), press the <Enter> key and continue typing the

formula on the next line. This way you can place an expression on multiple

lines. MATLAB will calculate the entire expression or execute a command after

pressing <Enter> on the last line (which does not have three consecutive dots).

MATLAB remembers the values of all variables defined during a session.

If, after entering the example above, some other calculations were done, and it

became necessary to display the value of x, then you should simply type x in the

command line and press <Enter>:

» x

 -0.6611

 The variables defined above can be used in other formulas as well. For

example, if now you need to calculate the expression

  23
75,2th 75,2 tg4,3ln 3,1sin

/
 ,

then just enter the following command:

» (x-y)^(3/2)

ans =

 -0.8139 + 0.3547i

 Calling MATLAB functions is flexible enough. For example, you can

calculate е3,5 by calling the exp function from the command line:

» ехр(3.5)

ans =

 33.1155

21

 Another way is to use the assignment operator:

» t = ехр(3.5)

t =

 33.1155

 Suppose that some of the calculations with variables are done. The rest of

the calculations have to be completed during the next session of MATLAB. In

this case, you will need to save the variables defined in the working space.

 2.1.2. Workspace saving

 The easiest way to save the values of all variables is to use the Save

Workspace As… item in the File menu. In this case, the Save… dialog box

appears, in which you should specify the directory and file name. By default, it

is suggested to save the file in the work subdirectory of the main MATLAB

directory. Leave this directory for now.

How to set directory paths for file search in MATLAB will be explained

further. It is convenient to give files names containing the date of work, for

example work20-06-12. MATLAB will save the results to a file work20-06-

12.mat. You can close MATLAB now in one of the following ways:

  select Exit MATLAB from the File menu;

  press the keys <Ctrl>+<Q>;

  type the Exit command in the command line and press <Enter>;

  click on the button with a cross in the upper right corner of the

MATLAB program window.

 In the next session, to restore the values of variables, open the work20-06-

12.mat file using the Open item of the File menu. Now all the variables defined

in the previous session are available. They can be used in newly entered

commands.

22

You can also save and restore working space variables from the command

line. Use save and load commands. At the end of the MATLAB session, it is

necessary to execute the command

» save work20-06-12

 The extension can be omitted, MATLAB will save the working space

variables in the work20-06-12.mat file. To read variables at the beginning of the

next session, enter the command

» load work20-06-12

 To get detailed information about save and load commands type help save

or help load at the command line.

 Comment 2

 Variables in files with the mat extension are stored in binary form.

Viewing these files in any text editor do not provide any information about the

variables and their values.

 MATLAB has the ability to write executable commands and results to a

text file (keep a log of work), which can be easily read or printed from a text

editor then. The diary command is used to start logging. The argument to the

diary command should be the name of the file that stores the job log. The

commands typed further and the results of their execution will be written to this

file, for example, a sequence of commands

» diary d20-06-12.txt

» al = 3;

» а2 = 2.5;

» а3 = al + a2

23

» а3 =

 5.5000

» save work20-06-12

» quit

performs the following actions:

 Opens the d20-06-12.txt file.

 Performs calculations.

 Saves the variables in the binary file work.20-06-12.mat.

 Saves the work log to the d20-06-12.txt file in the work subdirectory

of the MATLAB root directory and closes MATLAB.

 Look at the contents of the d20-06-12.txt file using any text editor, for

example, standard Windows NotePad program. The file contains the following

text:

al = 3;

а2 = 2.5;

а3 = al+a2

а3 =

 5.5000

save work20-02-06

quit

 Start MATLAB again and enter the command load work20-06-12 or open

the work20-06-12.mat file using the menu as described above.

 2.1.3. Variables View

 Working with a large number of variables, it is necessary to know which

variables have already been used and which have not. For this purpose, the who

24

command is used. It displays a list of used variables in the MATLAB command

window:

» who

Your variables are:

al a2 a3

 Whos command allows to get more detailed information about variables in

the table form:

 »

whos

Name Size Bytes Class

al 1l 8 double

array
a2 1l 8 double

array
a3 ll 8 double

array
Grand total is 3 elements using 24 bytes

 The first column Name consists of the names of used variables. The

content of the Size column is determined by the basic principle of MATLAB.

The MATLAB program presents all data as arrays. The variables al, a2 and a3

are one-by-one two-dimensional arrays. Each of the variables is eight bytes, as

indicated in the Bytes column. Finally, the last Class column indicates the

double array type of the variables, i.e. an array of double precision numbers.

The line below the table says that there are three elements, i.e. variables use

twenty four bytes. It turns out that representing all data in MATLAB as arrays

has certain advantages.

 Clear command is used to free all variables from memory. If the list of

variables is specified in the arguments (separated by a space), then only they

will be freed from memory.

For example:

25

» clear al аЗ

» who

Your variables are:

a2

 Starting with version 6.0, a convenient tool for viewing the variables of

the working space has appeared, the Workspace panel. It is necessary to activate

the tab of the same name in order to switch to it. This panel contains a table

similar to the one displayed by the whos command. Double-clicking on the row

corresponding to each variable displays its contents in a separate window. It is

especially useful when working with arrays. The Workspace panel toolbar

allows to remove unnecessary variables, save and open the workspace.

 2.1.4. Working with arrays

 It is very important to understand correctly how to use arrays. This

provide the effective work in MATLAB in particular, graphing, solving

problems in linear algebra, data processing, statistics and many others. This

subsection describes calculations with vectors.

 An array is an ordered, numbered collection of homogeneous data. The

array has a name. Arrays differ in the number of dimensions: one-dimensional,

two-dimensional, multi-dimensional. Items are accessed using an index. In

MATLAB, the numbering of array elements starts at one. This means that the

indices must be greater than one or equal to one.

 It is important to understand that a vector, row vector, or matrix are

mathematical objects, and one-dimensional, two-dimensional, or

multidimensional arrays are ways of storing these objects in a computer.

Further, the words vector and matrix will be used if the object is of more interest

than the way it is stored. The vector can be written in column (column vector)

and in row (row vector). Column vectors and row vectors will often be referred

to simply as vectors. A distinction will be made in cases where the way the

26

vector is stored in MATLAB is important. Vectors and matrices are denoted in

italics, and the corresponding arrays are denoted in regular monospaced font, for

example: "vector a is contained in array a", "write matrix R into array R".

 Input, addition and subtraction of vectors

 Let's start working with arrays with a simple example of calculating the

sum of vectors:



















9,6

4,5

3,1

a ,


















2,8

5,3

1,7

b .

 Use arrays a and b to store vectors. Enter array a on the command line

using square brackets and separating the vector elements with semicolons:

» a = [1.3; 5.4; 6.9]

a =

 1.3000

 5.4000

 6.9000

 Since the entered expression is not terminated with a semicolon, the

MATLAB package automatically printed the value of the variable a. Enter now

the second vector

» b = [7.1; 3.5; 8.2];

 The + sign is used to find the sum of vectors. Calculate the sum, write the

result to array c and display its elements in the command window:

» с = а + b

27

с =

 8.4000

 8.9000

 15.1000

 Find out the dimension and size of the array a using the built-in functions

ndims and size:

» ndims(a)

ans =

 2

» size(a)

ans = 3 1

 So, vector a is stored in a three-by-one two-dimensional array a (a column

vector of three rows and one column). Similar operations can be done for arrays

b and c. Since numbers in the MATLAB package are represented as one-by-one

two-dimensional array, the vector addition uses the same plus sign as the

number addition.

 Entering a row vector is realized within square brackets. Items are

separated with spaces or commas. Operations of addition, subtraction and

calculation of elementary functions from row vectors are performed in the same

way as with column vectors. As a result, row vectors of the same size as the

initial ones are obtained. For example:

» s1 = [3 4 9 2]

s1 =

 3 4 9 2

» s2 = [5 3 3 2]

s1 =

 5 3 3 2

28

» s3 = s1 + s2

s3 =

 8 7 12 4

 Comment 3

 If addition or subtraction is applied to vectors whose dimensions do not

match, an error message is issued.

 Naturally, the minus sign should be used to calculate the difference

between vectors, and it is more difficult to find the product.

 Enter two row vectors:

» v1 = [2 -3 4 1];

» v2 = [7 5 -6 9];

 The .* operation (do not insert a space between dot and asterisk!) results

in elementwise multiplication of vectors of the same length. The result is a

vector with elements equal to the product of the corresponding elements of the

original vectors:

» u = v1.*v2

u =

 14 -15 -24 9

 .^ is used to perform elementwise exponentiation:

» р = v1.^2

p =

29

 4 9 16 1

 The exponent can be a vector of the same length as the one exponentiated.

In this case, each element of the first vector is raised to a power equal to the

corresponding element of the second vector:

» p = vl.^v2

Р =

 128.0000 -243.0000 0.0002 1.0000

 Division of the corresponding elements of vectors of the same length is

performed using the operation ./

» d = v1./v2

d =

 0.2857 -0.6000 -0.6667 0.1111

 Reverse element-wise division (dividing the elements of the second vector

by the corresponding elements of the first one) is carried out using the

operation .\

» dinv = vl.\v2

dinv =

 3.5000 -1.6667 -1.5000 9.0000

 So, the dot in MATLAB is used not only to enter decimal fractions, but

also to indicate that division or multiplication of arrays of the same size should

be performed element by element.

30

 Operations with a vector and a number are also considered element-wise.

Adding a vector and a number does not generate an error message. MATLAB

adds a number to each element of the vector. The same is true for subtraction:

» v = [4 6 8 10];

» s = v + 1.2

s =

 5.2000 6.2000 9.2000 11.2000

» r = 1.2 - v

r =

 -2.8000 -4.8000 -6.8000 -8.8000

» r1 = v - 1.2

r1 =

 2.8000 4.8000 6.8000 8.8000

 You can multiply a vector by a number on both the right and left:

» v = [4 6 8 10];

» p = v*2

р =.

 8 12 16 20

» pi = 2*v

pi =

 8 12 16 20

 It is possible to divide a vector by a number using the / sign:

» р = v/2

p =

 2 3 4 5

31

 Attempting to divide a number by a vector results in an error message:

» р = 2/v

??? Error using ==> /

Matrix dimensions must agree.

 If you want to divide a number by each element of the vector and write

the result into a new vector, then you should use the operation ./

» w = [4 2 6];

» d = 12./w

d = 3 6 2

 All of the above operations apply to both row vectors and column vectors.

 The MATLAB feature of representing all data as arrays is very

convenient. Suppose, for example, you want to calculate the value of the sin

function at once for all elements of the vector c (which is stored in the array c)

and write the result to the vector d. To obtain a vector d, it is enough to use one

assignment operator:

» d = sin(с)

d =

 0.8546

 0.5010

 0.5712

 So, the atomic functions built into MATLAB adapt to the kind of

arguments; if the argument is an array, then the result of the function will be an

array of the same size, but with elements equal to the function value from the

32

corresponding elements of the initial array. Check this out with another

example. If you need to find the square root of the elements of the vector d with

a minus sign, then it is enough to write:

» sqrt(-d)

ans =

 0 + 0.9244i

 0 + 0.7078i

 0 + 0.7558i

 No assignment operator was used, so the MATLAB package wrote the

answer to a standard ans variable. To determine the length of column vectors or

row vectors, use the built-in length function:

» length(s1)

ans =

 4

 Multiple column vectors can be compiled into a single column vector by

using square brackets and separating the initial column vectors with a

semicolon:

» v1 = [1; 2];

» v2 = [3; 4; 5];

» v = [v1; v2]

v =

 1

 2

 3

 4

 5

33

 Square brackets are also used to concatenate row vectors, but the

concatenated row vectors are separated by spaces or commas:

» v1 = [1 2];

» v2 = [3 4 5];

» v = [v1 v2]

v =

 1 2 3 4 5

 Working with vector elements

 The elements of a column vector or row vector are accessed using an

index. It is enclosed in parentheses after the name of the array in which the

vector is stored. If among the environment variables there is an array v defined

by a row vector

» v = [1.3 3.6 7.4 8.2 0.9];

then to display, for example, its fourth element, indexing is used:

» v(4)

ans =

 8.2000

 The appearance of an array element on the left side of the assignment

operator results in a change in the array

» v(2) = 555

v =

 1.3000 555.0000 7.4000 8.2000 0.9000

 New arrays can be formed from array elements, for example

34

» u = [v(3); v(2); v(1)]

u =

 7.4000

 555.0000

 1.3000

 Indexing with a vector is used to place certain elements of a vector into

another vector in a given order. The fourth, second, and fifth elements of v are

written to the array w as follows:

» ind = [4 2 5];

» w = v(ind)

w =

 8.2000 555.0000 0.9000

 MATLAB provides a convenient way to refer to blocks of consecutive

elements of a column vector or row vector. This is done by indexing with a

colon. Suppose it is needed to replace with zeros the elements from the second

to the sixth in the array w corresponding to a row vector of seven elements.

Colon indexing allows you solve the task to easily and clearly:

» w = [0.1 2.9 3.3 5.1 2.6 7.1 9.8];

» w(2:6) = 0;

» w

w =

 0.1000 0 0 0 0 0 9.8000

 Assignment w(2:6) = 0 is equivalent to a sequence of commands

w(2) = 0; w(3) = 0; w(4) = 0; w(5) = 0; w(6) = 0.

35

 Colon indexing is useful when extracting part of a large amount of data

into a new array:

» w - [0.1 2.9 3.3 5.1 2.6 7.1 9.8];

» wl = w(3:5)

wl =

 3.3000 5.1000 2.6000

 Make an array w2 containing w elements other than the fourth. In this

case, it is convenient to use colon and string concatenation.:

» w2 = [w(l:3) w(5:7)]

w2 =

 0.1000 2.9000 3.3000 2.6000 7.1000 9.8000

 Array elements can be included in expressions. Finding, for example, the

geometric mean of the elements of the array u can be done as follows:

» gm = (u(l)*u(2)*u(3))^(l/3)

gm =

 17.4779

 Of course, this method is not very convenient for long arrays. In order to

find the geometric mean, it is necessary to type all the elements of the array in

the formula. There are many special functions in MATLAB that facilitate such

calculations.

 Applying data processing functions to vectors

 Multiplying elements of a column vector or row vector is performed using

the function prod:

36

» z = [3; 2; 1; 4; 6; 5];

» р = prod(z)

p =

 720

 The sum function is for summing the elements of a vector. It is easy to

calculate the arithmetic mean of the elements of the vector z:

» sum(z)/length(z)

ans =

 3.5000

 MATLAB also has a special function mean for calculating the arithmetic

mean:

» mean(z)

ans =

 3.5000

 To determine the minimum and maximum of the vector elements, use the

built-in functions min and max:

» m1 = max(z)

m1 =

 6

» m2 = min(z)

m2 =

 1

37

 It is often necessary to know not only the value of the minimum or

maximum element in an array, but also its index (ordinal number). In this case,

the built-in functions min and max are used with two output arguments, for

example

» [m, k] = min(z)

m =

 1

k =

 3

 As a result, the variable m will be assigned the value of the minimum

element of the array z, and the number of the minimum element will be entered

into the variable k.

 For information on the different ways to use functions, type help and the

function name at the command line. MATLAB will display all sorts of ways to

call the function in the command window with additional explanations.

 The main functions for working with vectors include the function of

ordering a vector in ascending order of its elements sort

» r = [9.4 -2.3 -5.2 7.1 0.8 1.3];

» R = sort(r)

R =

 -5.2000 -2.3000 0.8000 1.3000 7.1000 9.4000

 It is possible to order the vector in descending order using the same

function sort:

» R1 = -sort(-r)

R1 =

38

 9.4000 7.1000 1.3000 0.8000 -2.3000 -5.2000

 The ordering of elements in ascending order of their modules is performed

using the function abs:

» R2 = sort(abs(r))

R2 =

 0.8000 1.3000 2.3000 5.2000 7.1000 9.4000

 Calling sort with two output arguments results in an array of indices that

match the elements of the ordered and initial arrays:

» [rs, ind] = sort(r)

rs =

 -5.2000 -2.3000 0.8000 1.3000 7.1000 9.4000

ind =

 3 2 5 6 4 1

2.2. Individual tasks

 1. Create a log of the lab work.

 2. Calculate function values

xe
x

x
xy xln

 cos1

sin
)(

2





in points 0.2, 0.3, 0.5, 0.8, 1.3, 1.7, 2.5, N, k, where N is the number in group

register list; k is the numerical value of the expression given in the table 1.1 and

table 1.2 in accordance with the number N, written in the form N = СМ, where С

is the rank of hundreds, М is the units rank.

39

 3. Form a row vector v containing all the values of the x argument and the

last five values of the function y(x).

 4. Get the row vector v1 by adding 2.1 to each element of the row vector

v.

 5. Calculate: w = v + v1; w1 = v  v1; w2 = v1  v; w3 = v ./ v1;

w4 = v1.*v; w5 = v1.^v.

 6. Order the results of addition of vectors v + v1 in ascending order of

absolute values of the elements of the sum vector, increasing elements of the

sum vector, decreasing elements of the sum vector.

 7. Form the third and fifth elements into row vectors w, w1, w2, w3, w4,

w5 column vector ww.

 8. Determine in the ww vector the minimum and maximum element, the

sum and product of the vector components.

 9. Set the third through sixth elements of the ww array to one.

 10. Use the who and whos commands to get information about all

variables used in the lab.

 11. Record the first and last few lines from the lab log.

 12. Design a laboratory report.

40

Laboratory work 3

BASIC CALCULATIONS IN MATLAB PACKAGE

WITH THE USE OF MATRICES

 The purpose of the laboratory work is to obtain and to consolidate

knowledge, to form practical skills in working with the MATLAB package

when calculating using variables, vectors and matrices.

3.1. Summary of theory

 3.1.1. Different ways to enter matrices in MATLAB

 It is convenient to enter small-sized matrices directly from the command

line. Enter a two-by-three matrix








 


3

1

4

1

2

3
A .

 To store the matrix, use a two-dimensional array named A. When

entering, keep in mind that matrix A can be viewed as a column vector of two

elements. Each of these elements is a row vector of length three, therefore, rows

are separated by semicolons when typing:

» А =[3 1 -1; 2 4 3]

А =

 3 1 -1

 2 4 3

41

 To study the basic operations on matrices, we will give a few more

examples. Let's consider other input ways. Enter a square matrix of size three as

described below:























215

072

134

B .

 Start typing at the command line

» В = [4 3 -1

 Press the <Enter> key. Note that the package did not compute anything.

The cursor blinks on the next line without the » symbol. Continue entering the

matrix line by line. At the end of each line, press <Enter>. End the last line

with a closing square bracket, it turns out:

2 7 0

-5 1 2]

B = 4 3 -1

 2 7 0

 -5 1 2

 Another way to enter matrices is to interpret a matrix as a row vector,

each element of which is a column vector. For example, a two-by-three matrix








 


0

7

2

1

4

3
C

can be entered using the command:

42

» С = [[3; 4] [-1; 2] [7; 0]]

С =

 3 -1 7

 4 2 0

 Look at the working environment variables by typing whos in the

command line:

А 2x3 48 double array

В 3x3 72 double array

С 2x3 48 double array

 So, the working environment contains three matrices, two of them are

rectangular and one matrix is square.

 3.1.2. Accessing matrices elements in the MATLAB package

 Matrix elements are accessed using two indices such as row and column

numbers, enclosed in round brackets, for example

» С(2, 3)

ans =

 0

 Matrix elements can be included in expressions:

» С(1, 1) + С(2, 2) + С(2, 3)

ans = 5

 The arrangement of the matrix elements in the computer memory

determines another way of accessing them. An m-by-n matrix A is stored as a

43

vector of length mn, in which the elements of the matrix are arranged one after

the other in columns

[А(1,1) А(2,1)...А(m,1)...А(1,n) А(2,n)...А(m,n)].

 To access the elements of the matrix, you can use one index, which

specifies the ordinal number of the matrix element in the vector.

 The matrix C defined in the previous subsection is contained in the vector

[C(1,1) C(2,1) C(1,2) С(2,2) С(1,3) С(2,3)],

which has six components. Matrix elements are accessed as follows:

» С(1)

ans =

 3

» С(5)

ans =

 7

 3.1.3. Matrices operations in the MATLAB package: addition,

subtraction, multiplication, transposition and exponentiation

 When using matrices operations, remember that matrices must be of the

same size for addition or subtraction. And when using multiplying, the number

of columns in the first matrix must be equal to the number of rows in the second

matrix.

Addition and subtraction of matrices, as well as numbers and vectors, is

carried out using the plus and minus signs. Find the sum and difference of the

matrices C and A defined above:

44

» S = А+С

S =

 6 0 6

 6 6 3

» R = С-А

R =

 0 -2 8

 2 -2 -3

 Make sure the dimension matches, otherwise an error message will be

received:

» S = А+В

??? Error using ==> 

Matrix dimensions must agree.

 The asterisk is used for matrix multiplication:

» Р = С*В

P =

 -25 9 11

 20 26 -4

 Multiplication of a matrix by a number is also carried out using an

asterisk. You can multiply by a number both to the right and to the left:

» Р = А*3

Р =

 9 3 -3

45

 6 12 -3

» Р = 3*А

Р =

 9 3 -3

 6 12 9

 Transposition of a matrix, like a vector, is done with .'. And the ' symbol

means complex conjugation. For real matrices, these operations lead to the same

results:

» В'

ans =

 4 2 -5

 3 7 1

 -1 0 2

» В.'

ans =

 4 2 -5

 3 7 1

 -1 0 2

 Comment 1

 If the matrix  ,ikaA mkni ,1 ,,1  is an arbitrary matrix of size nm,

then the matrix transposed with respect to A is a matrix of size mn:  ,kiaA 

,,1 mk  . ,1 ni  Thus, the rows of the matrix A become columns of the matrix

A , and the columns of the matrix A become rows of the matrix A .

 A complex conjugate matrix is obtained from the original one in two

stages: the transposition of the original matrix is performed, and then all

complex numbers are replaced by complex conjugate ones.

46

 Conjugation and transposition of matrices containing complex numbers

will result in different matrices:

» К = [l-i, 2+3i; 3-5i, l-9i]

К = 1.0000 – 1.0000i 2.0000 + 3.0000i

 3.0000 – 5.0000i 1.0000 – 9.0000i

» К '

ans =

 1.0000 + 1.0000i 3.0000 + 5.0000i

 2.0000 – 3.0000i 1.0000 + 9.0000i

» К.'

ans =

 1.0000 - 1.0000i 3.0000 - 5.0000i

 2.0000 + 3.0000i 1.0000 - 9.0000i

 Comment 2

 When entering row vectors, their elements can be separated by either

spaces or commas. When entering the matrix K, commas are used for more

visual separation of complex numbers in a row.

 The integer exponentiation of a square matrix is performed using the

operator ^:

» В2 = В^2

B2 =

 27 32 -6

 22 55 -2

 -28 -6 9

 Check your result by multiplying the matrix by itself.

Make sure you have mastered the basic matrix operations in MATLAB.

Find the meaning of the following expression

47

(A + С) В3 (A  С)Т.

 Consider the priority of the operations: transpose is performed first, then

exponentiation, then multiplication, and addition and subtraction are performed

last.

» (А+С)*В^3*(А-С)'

ans =

 1848 1914

 10290 3612

 3.1.4. Multiplication of matrices and vectors

 A column vector or a row vector in MATLAB is matrices in which one of

the dimensions is equal to one. Therefore, all of the above operations are

applicable to matrix multiplication by a column vector or to multiply a row

vector by a matrix. For example, the calculation of expression



































4

3

8

290

184

102

]231[

can be done as follows:

» a = [1 3 -2];

» B = [2 0 1; -4 8 -1; 0 9 2];

» c = [-8; 3; 4];

» a*B*c

ans =

 74

48

 3.1.5. Linear equations systems solving

 Mathematics does not say anything about dividing matrices and vectors,

but MATLAB uses the \ character to solve systems of linear equations. Let's

solve a system of three equations with three unknowns:















.xxx

xxx

xxx

4,56,57,09,0

;9,33,11,25,0

;3,12,03,02,1

321

321

321

 Let us introduce the matrix of coefficients of the system into array A, and

let us introduce the vector of the right-hand side of the system into array b. Let's

solve the system using the symbol \:

» x = A\b

x =

 1.0000

 1.0000

 1.0000

 Check the correctness of the answer by multiplying the matrix of

coefficients of system A by the column vector x.

 3.1.6. Block matrices

 Very often so-called block matrices appear in applications, i.e. matrices

made up of disjoint submatrices (blocks). Consider first the construction of

block matrices. Enter matrices















41

41
A , 










50

02
B , 














33

33
C , 










101

98
D

49

and create a block matrix out of them 









DC

BA
K .

 Considering that the matrix K consists of two rows, its first row contains

matrices A and B, and its second row contains matrices C and D. The block

matrix can be formed as follows:

» К = [А В; С D]

K =

 -1 4 2 0

 -1 4 0 5

 3 -3 8 9

 -3 3 1 10

 The block matrix can be obtained in another way. If we assume that the

matrix K consists of two columns, the first column contains matrices A and C,

and the second column contains matrices B and D:

» K = [[А; С] [В; D]]

 The opposite to the construction of block matrices is the problem of block

selection. The selection of matrix blocks is carried out by indexing using a

colon. Enter the matrix





















5329

510110

512104

2021

P

and then select a submatrix with elements ,a22 ,a23 ,a32 33a , by specifying row

and column numbers using colons:

50

»Р1 = Р(2:3,2:3)

Р1 =

 10 12

 11 10

 To select a column or row from a matrix (that is, an array that has one of

the dimensions equal to one), use the number of the column or row of the matrix

as one of the indices. The other index should be replaced with a colon without

specifying limits. For example, write the second row of the matrix P into the

vector p

»p = P(2, :)

p =

 4 10 12 5

 When selecting a block to the end of the matrix, you can not specify its

dimensions, but use the element end:

»p = Р(2, 2:end)

p =

 10 12 5

 3.1.7. Rows and Columns Deleting

 In MATLAB, paired square brackets [] denote an empty array, which, in

particular, allows you to delete rows and columns of a matrix. To delete a row, it

is necessary to assign an empty array to it. Remove for example the first row of

a square matrix:

» М =[2 0 3; 1 1 4; 6 1 3];

» M(1,:)=[];

» M

51

M =

 1 1 4

 6 1 3

 Note the corresponding resizing of the array, which can be checked withи

size:

» size(M)

ans =

 2 3

 Columns are removed in the same way. To remove multiple consecutive

columns (or rows), they need to be assigned an empty array. Remove the second

and third column in the array M

» М(:, 2:3) = []

M =

 1

 6

 Indexing significantly saves time when entering matrices with a specific

structure.

 3.1.8. Filling matrices using indexing

 Above, there are several ways to enter matrices in MATLAB. However, it

is often easier to generate a matrix than to enter one, especially if it has a simple

structure. Consider an example of such a matrix:

52



























11100

00000

00000

00000

11111

T .

 The matrix T is generated in three stages:

 1. Create a five-by-five array T of zeros.

 2. Filling the first row with ones.

 3. Filling the last row with minus one to the last element.

 The relevant MATLAB commands are given below.

» A(1:5, 1:5) = 0

A=

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

» A(1, :) = 1

A=

 1 1 1 1 1

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

» A(end, 3:end) = -1

A=

 1 1 1 1 1

 0 0 0 0 0

53

 0 0 0 0 0

 0 0 0 0 0

 0 0 -1 -1 -1

 Some special matrices are created in MATLAB using built-in functions.

 3.1.9. Special matrices creating

 Filling a rectangular matrix with zeros is performed by the built-in

function zeros. It’s arguments are the number of rows and columns of the

matrix:

» A = zeros(2, 6)

A =

 0 0 0 0 0 0

 0 0 0 0 0 0

 One argument of zeros function results in the formation of a

predetermined size of square matrix:

» A = zeros(3)

A =

 0 0 0

 0 0 0

 0 0 0

 The identity matrix is initialized using the eye function:

» I = eye(3)

I=

 1 0 0

54

 0 1 0

 0 0 1

 The eye function with two arguments creates a rectangular matrix. It’s

main diagonal has ones. And the other elements are equal to zero:

» I = eye(4, 8)

I =

 1 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0

 0 0 1 0 0 0 0 0

 0 0 0 1 0 0 0 0

 A matrix consisting of ones is formed by calling the ones function:

» E = ones(3, 7)

E =

 1 1 1 1 1 1 1

 1 1 1 1 1 1 1

 1 1 1 1 1 1 1

 Using one argument in ones function results in a square matrix of ones.

 MATLAB provides the ability to fill matrices with random elements.

The result of the rand function is a matrix of numbers randomly

distributed between zero and one.

The result of the randn function is a matrix of normally distributed

numbers:

» R = rand(3, 5)

R =

55

 0.9501 0.4860 0.4565 0.4447 0.9218

 0.2311 0.8913 0.0185 0.6154 0.7382

 0.6068 0.7621 0.8214 0.7919 0.1763

 One argument of rand and randn functions results in square matrices.

 It is often necessary to create diagonal matrices, i.e. matrices for which all

off-diagonal elements are equal to zero. The diag function forms a diagonal

matrix from a column vector or row vector by arranging their elements along the

diagonal of the matrix:

» d = [1; 2; 3; 4];

» D = diag(d)

D =

 1 0 0 0

 0 2 0 0

 0 0 3 0

 0 0 0 4

 The diag function also serves to extract the diagonal of a matrix into a

vector, for example

» A = [10 1 2; 1 20 3; 2 3 30];

» d = diag(A)

d =

 10

 20

 30

56

 3.1.10. Element-wise operations on matrices

 Since vectors and matrices are stored in two-dimensional arrays, the

application of mathematical functions to matrices and element-wise operations

are performed in the same way as for vectors.

Enter two matrices








 


9

1

4

5

3

2
A , 














5

8

3

2

7

1
B .

 The multiplication of each element of one matrix by the corresponding

element of another is performed using the operator .* :

» С = А.*В

С =

 -2 10 -8

 21 -12 -45

 To divide the elements of the first matrix by the corresponding elements

of the second, use the operator ./. And to divide the elements of the second

matrix by the corresponding elements of the first one use the operator .\:

» R1 = А./В1

R1 =

 -2.0000 2.5000 -0.1250

 0.4286 -1.3333 -1.8000

» R2 = А.\В1

R2 =

 -0.5000 0.4000 -8.0000

 2.3333 -0.7500 -0.5556

57

 Element-wise exponentiation is performed using the .^ operator. The

exponent can be a number or a matrix of the same size as the exponential matrix.

In the second case, the elements of the first matrix are raised to powers equal to

the elements of the second matrix.

 3.1.11. Matrix visualization

 Sparse matrices are the matrices which have a sufficiently large number of

zeros. It is often necessary to know where nonzero elements are located, i.e. get

the so called matrix template. For this, MATLAB uses the spy function. Let's

see the G matrix template































2100000

1210000

0121000

0012100

0001210

0000121

0000012

G

» spy(G)

 After executing the spy command Figure No. 1 graphic window appears.

Row and column numbers are plotted on the vertical and horizontal axes.

Nonzero elements are indicated by markers.

The number of non-zero items is listed at the bottom of the graphics

window (nz = 19).

 The imagesc function gives visual information about the ratio of the

values of the elements of the matrix. It interprets the matrix as a rectangular

image. Each element of the matrix is represented as a square, the color of which

corresponds to the size of the element.

58

In order to find out the correspondence between the color and the size of

an element, use the colorbar command, which displays a color bar next to the

matrix image (Insert (in graphics window Figure No. 1), colorbar).

Finally, for printing on a monochrome printer, it is convenient to obtain a

grayscale image using the command colormap(gray) (Edit (in graphics window

Figure No. 1), Colormap, Colormap Editor, Tools, gray). We will work with

matrix G. Type the commands below and monitor the state of the graphics

window:

» imagesc(G)

» colorbar

» colormap(gray)

 The result is a visual representation of the matrix.

3.2. Individual tasks

 1. Create a log of the lab work.

 2. Enter two matrices A and B of three by three dimension.

 3. Perform addition, subtraction and multiplication operations on matrices.

 4. Transpose matrices A and B.

 5. Create a complex matrix C from the matrices A and B. Elements of

matrix A must become real parts of complex numbers, and elements of matrix B

must become complex parts, i.e. the relation:

,ibac kjkjkj  k, j =1, 2, 3.

must be satisfied between the elements of the matrices.

 6. Define a matrix that is complex conjugate to a matrix C.

 7. Raise square matrix A to the second power using operator ^. Compare

the result obtained by multiplying the matrix A by itself.

59

 8. Calculate the product of the first row of matrix A and matrix B, and the

product of matrix B and the third column of matrix A.

 9. Solve a system of linear equations

,

,

,

3333221

2232221

1131211

dzayaxa

dzayaxa

dzayaxa







where the coefficients of the equations system are determined by the number

according to the list in the group register from the table 3.1.

 10. Create transposed matrices TA and TB from matrices A and B and

block matrix 









TT AB

BA
K .

 11. Remove second column and third row from matrix K.

 12. Fill in a rectangular matrix with dimensions of at least 58 with zeros

using the function zeros.

 13. Initialize rectangular and square identity matrices that contain at least

five ones using the eye function.

 14. Create rectangular and square matrices of ones with at least four rows

using the ones function.

 15. Create a 45 matrix of numbers randomly distributed between zero

and N using the rand function.

 16. Form a diagonal matrix from the elements of the first row of a block

matrix using the diag function

 17. Perform the element-wise operations you know about the matrices A

and B.

 18. Perform the visualization of a block matrix using commands spy,

imagesc, colorbar, colormap(gray).

 19. Record the first and last few lines from the lab log.

 20. Design a laboratory report.

60

 Table 3.1 – Coefficients of the equations system

№ 11a 12a 13a 21a 22a 23a 31a 32a 33a 1d 2d 3d

1 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 1,32 3,91 5,4

2 1,2 0,3 –0,2 0,5 2,1 1,3 –0,9 0,7 5,6 1,32 3,91 5,4

3 –1,2 0,3 –0,2 0,5 2,1 1,3 –0,9 0,7 5,6 1,32 3,91 5,4

4 1,2 –0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 1,32 3,91 5,4

5 –1,2 –0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 1,32 3,91 5,4

6 –1,2 –0,3 –0,2 0,5 2,1 1,3 –0,9 0,7 5,6 1,32 3,91 5,4

7 –1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 1,32 3,91 5,4

8 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 1,60 3,91 5,4

9 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 1,60 4,90 5,4

10 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 1,81 4,53 5,4

11 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 1,81 4,53 5,8

12 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 2,83 4,53 5,8

13 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 3,83 4,53 5,8

14 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 3,32 4,53 5,8

15 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 0,32 0,53 5,8

16 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 –5,6 0,32 0,45 5,8

17 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 –5,6 –0,32 0,45 5,8

18 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 –5,6 –0,32 –0,45 5,8

19 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 –5,6 –0,32 –0,35 5,8

20 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 –5,6 –0,32 –0,25 –5,8

21 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 –5,6 –0,32 –0,18 5,0

22 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 –5,6 –0,32 –0,15 4,0

23 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 –5,6 –0,32 –0,1 2,0

24 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 –5,6 –0,10 –0,1 1,0

25 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 –5,6 0 –0,1 0,5

26 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 –5,6 0 –0,01 0

27 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 –5,6 –0,32 –0,18 5,0

28 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 1,81 4,53 5,8

29 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 2,83 4,53 5,8

30 1,2 0,3 0,2 0,5 2,1 1,3 –0,9 0,7 5,6 3,83 4,53 5,8

61

Laboratory work 4

BUILDING TABLES OF VALUES AND GRAPHS OF FUNCTIONS

IN THE MATLAB PACKAGE

 The purpose of the laboratory work is to obtain and consolidate

knowledge, to develop practical skills in working with the MATLAB package

when building tables of values and functions graphs.

4.1. Summary of theory

 4.1.1. Building tables of one variable function values in the MATLAB

package

 Displaying a function in a table is useful if you have a relatively small

number of function values. Suppose you want to display a table of function

values in the command window

xe
x

x
xy xln

 cos1

sin
)(

2





in points 0,2; 0,3; 0,5; 0,8; 1,3; 1,7; 2,5.

 The task is performed in two stages.

 1. Row vector x is created. It contains the coordinates of the given points.

 2. The values of the function y(x) from each element of the vector x are

calculated. The obtained values are written into the row vector y.

 The function values should be found for each of the elements of the row

vector x. Therefore, the operations in the expression for the function should be

performed elementwise.

62

» х = [0.2 0.3 0.5 0.8 1.3 1.7 2.5]

х =

 0.2000 0.3000 0.5000 0.8000 1.3000 1.7000 2.5000

» у = sin(x).^2./(l+cos(x))+exp(-x).*log(x)

У =

 -1.2978 -0.8473 -0.2980 0.2030 0.8040 1.2258

1.8764

 Please note that when trying to use exponentiation ^, division / and

multiplication * (which are not elementwise), an error message is displayed

already when squaring sin (x):

» у = sin(х)^2/(1+соз(х))+exp(-x)*log(x)

??? Error using ==> ^

Matrix must be square.

 In MATLAB, the * and ^ operations are used to multiply matrices of

appropriate sizes and to raise a square matrix to еру second power.

 You can make the table more readable by placing the function values

directly below the argument values:

» х

х =

 0.2000 0.3000 0.5000 0.8000 1.3000 1.7000 2.5000

» у

у =

 -1.2978 -0.8473 -0.2980 0.2030 0.8040 1.2258

1.8764

63

 Often it is required to display the value of a function at points of a

segment that are equidistant from each other (step). Suppose that it is necessary

to display a table of values of the function y(x) on the segment [1, 2] with a step

of 0.2. You can, of course, enter a row vector of argument values х = [1, 1.2,

1.4, 1.6, 1.8, 2.0] from the command line and calculate all the values of the

function as described above. However, if the step is not 0.2, but, for example,

0.01, then there is a lot of work to be done on entering the vector x.

 MATLAB provides a simple creation of vectors, each element of which

differs from the previous one by a constant value, i.e. one step. To enter such

vectors, use a colon (do not confuse with indexing with a colon). The following

two operators produce the same row vectors. You can conditionally type

» х = [1, 1.2, 1.4, 1.6, 1.8, 2.0]

х =

 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000

» х = [1:0.2:2]

х =

 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000

where х = [start value : step: end value].

 It is not necessary to care that the sum of the penultimate step value is

equal to the final value, for example, when executing the following assignment

operator

» х = [1:0.2:1.9]

х =

 1.0000 1.2000 1.4000 1.6000 1.8000

 The row vector will fill up to an element that does not exceed the final

value we defined. The step can be negative:

64

» х = [1.9:-0.2:1]

х =

 1.9000 1.7000 1.5000 1.3000 1.1000

 In the case of a negative step, the start value must be greater than the end

value to obtain a non-empty row vector.

To fill a column vector with elements starting at zero and ending at 0.5 in

step of 0.1, fill the row vector and then use the transpose operation:

» х = [0:0.1:0.5]'

х =

 0

 0.1000

 0.2000

 0.3000

 0.4000

 0.5000

 Please note that the elements of a vector filled with a colon can only be

real, so an apostrophe can be used for transposition instead of a dot with an

apostrophe.

A step that is equal to one is allowed not to be specified during automatic

filling:

» х = [1:5]

х =

 1 2 3 4 5

 Suppose you want to display a table of function values

65

)10sin()(xexy x

on the segment [0, 1] with a step 0,05.

 To complete this task, you should perform the following actions:

 1. Form the row vector x using a colon.

 2. Calculate the values of y(x) from the elements х.

 3. Write the result to the row vector y.

 4. Output х and у.

» х = [0:0.05:1];

» у = ехр(-х).*sin(10*x);

» х

х =

 Columns 1 through 7

 0 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000

 Columns 8 through 14

 0.3500 0.4000 0.4500 0.5000 0.5500 0.6000 0.6500

 Columns 15 through 21

 0.7000 0.7500 0.8000 0.8500 0.9000 0.9500 1.0000

» у

У = Columns 1 through 7

 0 0.4560 0.7614 0.8586 0.7445 0.4661 0.1045

 Columns 8 through 14

 -0.2472 -0.5073 -0.6233 -0.5816 -0.4071 -0.1533

0.1123

 Columns 15 through 21

 0.3262 0.4431 0.4445 0.3413 0.1676 -0.0291 -

0.2001

66

 Row vectors x and y consist of twenty-one elements and do not fit in one

line on the screen, so they are displayed in parts. Since x and y are stored in one-

by-twenty-one two-dimensional arrays, they are displayed in columns, each of

which consists of one element. First, columns 1 through 7 are displayed, then

columns 8 through 14 are displayed, and finally columns 15 through 21 are

displayed. The graphical representation of the function is more visual and

convenient.

 4.1.2. One variable functions plotting

Graphs functions in the linear scale

 MATLAB has well-developed graphical capabilities for data

visualization. Let us first consider the construction of the simplest graph of one

variable function using the example of the function

)10sin()(xexy x ,

that is defined on the segment [0, 1]. Displaying a function in a graph form

consists of the following steps:

 1. Specifies a vector of values for the argument x.

 2. Calculation of the y vector of the function y(x) values.

 3. Calling the plot command to plot the graph.

 Commands for specifying the vector x and calculating the function are

best terminated with a semicolon to suppress their values output to the command

window. It is not necessary to put a semicolon after the plot command, since it

does not output anything to the command window

» х = [0:0.05:1];

» у = ехр(-х).*sin(10*x);

» plot(x, у)

67

 The Figure No. 1 window appears on the screen after executing the

commands. It includes a graph of the function. The window contains a menu, a

toolbar and a graph area. In the following, we will describe the commands

specially designed for the graphs design. Now we are interested in the very

principle of graphs plotting and some of the basic possibilities’ functions

visualizing.

 Two vectors of the same dimension must be defined, for example x and y,

to plot the function in the MATLAB workspace. The corresponding array x

contains the values of the arguments, and y contains the function values of those

arguments.

The plot command connects the points with the coordinates (x(i), y(i))

using straight lines, automatically scaling the axes for the optimal graph position

in the window. When plotting graphs, it is convenient to place the main

MATLAB window and the graph window side by side on the screen so that they

do not overlap.

The plotted function graph has kinks. For a more accurate plotting, the

function y(x) must be calculated at a larger number of points on the segment

[0, 1], i.e. it is necessary to set a smaller step when entering the vector x:

» х = [0:0.01:1];

» у = ехр(-х).*sin(10*x);

» plot(x, у)

 The result is a graph of the function as a smoother curve.

 It is convenient to compare several functions by displaying their graphs on

the same axes. For example, let us build graphs of functions 









2

1
sin)(

x
xf ,











2

2,1
sin)(

x
xf on the segment [1, 0.3] using the following sequence of

commands:

68

» х = [1:0.005:0.3];

» f = sin(x.^-2);

» g = sin(1.2*x.^-2);

» plot(x, f, x, g)

 Functions do not have to be defined on the same segment. In this case,

when plotting the graphs, MATLAB selects the maximum segment containing

the rest. It is only important to indicate the vectors corresponding to each other

in each pair of abscissas and ordinates vectors, for example:

» х1 = [1:0.005:0.3];

» f = sin(x1.^-2);

» х2 = [1:0.005:0.3];

» g = sin(1.2*x2.^-2);

» plot(x1, f, x2, g)

 Similarly, by specifying comma-separated pairs of arguments (abscissa

vector, ordinate vector) in plot, graphs of an arbitrary number of functions are

plotted.

 Comment 1

 Using plot with one argument, that is a vector, results in a "vector graph",

i.e. dependence of vector elements values on their numbers. The plot argument

can also be a matrix; in this case, the graphs of the columns are displayed on the

same coordinate axes.

Sometimes you want to compare the behavior of two functions whose

values are very different from each other. The function graph with small values

practically merges with the abscissa axis, and it is not possible to establish its

appearance. In this situation, the plotyy function helps, which displays graphs in

a window with two vertical axes with a suitable scale.

69

 Compare, for example, two functions: 3)( xxf and

.xxF 4)5,0(1000)(

» х = [0.5:0.01:3];

» f = х.^-3;

» F = 1000*(х+0.5).^-4;

» plotyy(x, f, x, F)

 As you run this example, notice that the color of the graph matches the

color of its corresponding y-axis.

The plot function uses a linear scale on both coordinate axes. However,

MATLAB provides the user with the ability to plot functions of one variable on

a logarithmic or semi-logarithmic scale.

 Functions graphs in logarithmic scales

 The following functions are used to plot graphs in logarithmic and semi-

logarithmic scales:

 loglog (logarithmic scale on both axes);

 semilogx (logarithmic scale on the abscissa axis only);

 semilogy (logarithmic scale on the ordinate only).

 The loglog, semilogx, and semilogy arguments are specified as a pair of

vectors of abscissa and ordinate values in the same way as for the plot function

described in the previous paragraph. Let's plot, for example, graphs of functions

)5,0ln((xxf  and))sin(ln()(xxg  on the interval [0,1, 5] in a logarithmic

scale along the x axis:

» х = [0.1:0.01:10];

» f = log(0.5*x);

» g = sin(log(x));

» semilogx(x, f, x ,g)

70

 Line properties setting on functions graphs

 The constructed graphs of functions should be as easy to read as possible.

Often you need to apply markers, change the color of the lines, and in

preparation for monochrome printing, you often need to set the line type (solid,

dotted, dash-dotted, etc.).

 MATLAB provides the ability to control the appearance of graphs plotted

with plot, loglog, semilogx, and semilogy. This is done by an additional

argument placed behind each pair of vectors. This argument is enclosed in

apostrophes and consists of three characters that define: color, marker type, and

line type. One, two or three positions are used, depending on the required

changes.

 Table 4.1 shows the possible values of this argument with an indication of

the result.

 If, for example, you need to plot the first graph with red dotted markers

without a line, and the second graph needs to be drawn with a black dotted line,

then you should use the command plot(x, f, 'r.', х, g, 'k:').

 Table 4.1 – Possible argument values

Color Marker type Line type

y yellow . dot - solid

m pink  circle : dotted

c light blue х cross -. dash-dotted

r red + plus sign -- dashed

g green * asterisk

b bkue s square

w white d rhombus

k black v downward triangle

 ^ upward triangle

 < left-pointing triangle

 > right-pointing triangle

 p five pointed star

 h six pointed star

71

 Functions graphs designing

 Whether it is convenient to use graphics or not depends on additional

design elements: a coordinate grid, axis labels, title and legend. The grid is

applied using the grid on command, the axis labels are placed using xlabel,

ylabel, the title is given by the title command. The presence of several graphs on

the same axes requires placing a legend with the legend command with

information about the lines. All of the above commands are applicable to graphs

in both linear and logarithmic and semi-logarithmic scales. The following

commands display graphs of daily temperature changes, which are provided

with all the necessary information

» time = [0 4 7 9 10 11 12 13 13.5 14 14.5 15 16 17

18 20 22];

» temp1 = [14 15 14 16 18 17 20 22 24 28 25 20 16 13

13 14 13];

» temp2 = [12 13 13 14 16 18 20 20 23 25 25 20 16 12

12 11 10];

» plot(time, temp1, 'ro-', time, temp2, 'go-')

» grid on

» title('Daily temperatures')

» xlabel('Time (hours))

» ylabel('Temperature (С)')

» legend('March1 10, March 11')

 When adding a legend, keep in mind that the order and number of

arguments to the legend command should match the lines on the graph. The last

additional argument can be the position of the legend in the graphics window:

 1  outside the graph in the upper right corner of the graphics

window;

72

 0  the best position within the graph is chosen so as to overlap the

graphs themselves as little as possible;

 1  in the upper right corner of the graph (this position is used by

default);

 2  in the upper left corner of the graph;

 3  in the lower left corner of the graph;

 4  in the lower right corner of the graph.

 You can add formulas and change font styles for the graph title, legend,

and axis labels using the TeX format.

MATLAB displays graphs in different colors. A monochrome printer will

print graphs in various shades of gray, that is not always convenient. The plot

command makes it easy to set the style and color of lines, for example,

» plot(x,f,'k-',x,g,'k:')

builds the first graph with a solid black line, and the second graph with a black

dotted line. The 'k-' and 'k:' arguments specify the style and color of the first and

second lines. Here k means black, and a hyphen or colon mean a solid or dashed

line. The window with the graph can be closed by clicking on the button with a

cross in the upper right corner

 4.1.3. Two variables functions plotting

 Plotting a function of two variables on a rectangular variable definition

area includes two preliminary stages in MATLAB:

 1. Subdividing the definition area with a rectangular grid.

 2. Calculation function values at points of grid lines intersection and write

them into a matrix.

 Let's plot the function z(x, у) = х2 + у2 on the definition area in the form of

a square х  [0, l], y  [0, l]. It is necessary to divide the square with a uniform

73

grid (for example, with a step of 0.2) and calculate the values of the functions at

the nodes indicated by dots.

 It is convenient to use two two-dimensional arrays x and y, six by six, to

store information about the coordinates of the nodes. Array x consists of

identical rows where coordinates xl, х2, ..., х6 are written, and the array y

contains the identical columns with yl, у2, ..., у6. Let's write the values of the

function at the grid nodes into an array z of the same dimension (6  6),

moreover, to calculate the matrix Z, we use the expression for the function, but

with element-wise matrix operations. Then, for example, z(3, 4) will be exactly

equal to the value of the function z(x, y) at the point (х3, у4). The meshgrid

function is used in MATLAB to generate x and y mesh arrays from the

coordinates of the nodes. The mesh function is used to plot the graph as a

wireframe surface. The following operators lead to the appearance of a window

with the function graph on the screen (the semicolon is not put at the end of the

operators in order to control the generation of arrays):

» [X, У] = meshgrid(0:0.2:1,0:0.2:1)

X =

 0 0.2000 0.4000 0.6000 0.8000 1.0000

 0 0.2000 0.4000 0.6000 0.8000 1.0000

 0 0.2000 0.4000 0.6000 0.8000 1.0000

 0 0.2000 0.4000 0.6000 0.8000 1.0000

 0 0.2000 0.4000 0.6000 0.8000 1.0000

 0 0.2000 0.4000 0.6000 0.8000 1.0000

y =

 0 0 0 0 0 0

 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000

 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000

 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000

74

 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

» Z = X.^2+Y.^2

Z =

 0 0.0400 0.1600 0.3600 0.6400 1.0000

 0.0400 0.0800 0.2000 0.4000 0.6800 1.0400

 0.1600 0.2000 0.3200 0.5200 0.8000 1.1600

 0.3600 0.4000 0.5200 0.7200 1.0000 1.3600

 0.6400 0.6800 0.8000 1.0000 1.2800 1.6400

 1.0000 1.0400 1.1600 1.3600 1.6400 2.0000

» mesh(X,Y,Z)

 MATLAB allows you to apply for more information to the graph, such as

color matching to function values. The mesh is generated using the meshgrid

command, invoked with two arguments. The arguments are vectors. The

elements of the vectors correspond to the grid on the rectangular area of the

function construction. One argument can be used if the area of function

construction is square. To calculate the function, use element-wise operations.

 Let's consider the main possibilities provided by MATLAB for

visualizing functions of two variables, using the example of plotting a function

)1()1()5,1cos()2sin(4)(2 yyxyxy,xz 

on a rectangular definition area х  [l, l], y  [0, l].

 Prepare matrices with coordinates of grid nodes and function values:

» [X, Y] = meshgrid(-l:0.05:l, 0:0.05:1);

» Z=4*sin(2*pi*X).*cos(1.5*pi*Y).*(1-Х.^2).*Y.*(1-Y);

75

 To build a wireframe surface, use the mesh function, called with three

arguments

» mesh(X,Y,Z)

 The color of the surface lines corresponds to the values of the function.

MATLAB only draws the visible portion of the surface.

With the hidden off command, you can make the wireframe surface

"transparent" by adding a hidden portion. The hidden on command removes the

invisible part of the surface, returning the graphics to their previous appearance.

The surf function builds the wireframe surface of the function graph and fills

each cell of the surface with a specific color depending on the function values at

the points corresponding to the corners of the cell. The color is constant within

each cell. Look at the results of the command

» surf(X,Y,Z)

 The shading flat command allows you to remove wireframe lines. To

obtain a surface smoothly filled with a color depending on the function values,

use the command shading interp.

 With shading faceted you can go back to the surface with wireframe lines.

 Three-dimensional plots obtained using the commands described above

are convenient for getting an idea of the surface shape, but it is difficult to

estimate the values of the function from them. MATLAB defines the colorbar

command, which displays a column next to the graph that sets the

correspondence between color and function value. Use surf to plot a surface and

add color information

» surf(X,Y,Z)

» colorbar

76

 The colorbar command can be used in conjunction with all 3D building

functions.

 Using a colored surface, it is difficult to draw a conclusion about the

function value at one point or another in the xy plane. The meshc or surfc

commands allow you to get a more accurate idea of the function behavior. These

commands draw a wireframe surface or a color-flooded wireframe surface. Then

they place function level lines (lines of function values constancy) on the xy

plane:

» surfc(X,Y,Z)

» colorbar

 MATLAB allows you to construct a surface composed of level lines using

the contour3 function. This function can be used in the same way as mesh, surf,

meshc, and surfc described above with three arguments.

The number of level lines is selected automatically. The number of level

lines can be specified by the fourth argument to contour3. Also, a vector whose

elements are equal to the function values displayed as level lines can be

specified as the fourth argument in contour3.

Setting a vector (the fourth argument levels) is convenient when you need

to study the behavior of a function in a certain range of its values (a slice of a

function).

Plot, for example, a surface consisting of level lines corresponding to

function values from 0 to 0.5 in increments of 0.01:

» levels = [0:0.01:0.5];

» contour3(X, Y, Z, levels)

» colorbar

77

 4.1.4. Contour plots of two variables functions building

 MATLAB provides the ability to generate various types of contour plots

using the contour and contourf functions. Let's consider their capabilities using

the example of the function

)1()1()5,1cos()2sin(4)(2 yyxyxy,xz  .

 Using contour with three arguments contour(X, Y, Z) results in a graph

that shows the level lines on the xy plane, but without numerical values on them.

Such a graph is not very informative, it does not allow you to find out the values

of the function on each of the level lines.

Using the colorbar command will also not allow you to accurately

determine the function's values. Each level line can be assigned a value that the

function under study takes on it using the clabel function defined in MATLAB.

The clabel function is called with two arguments: a matrix containing

information about the level lines and a pointer to the graph on which the markup

should be applied.

The user does not need to create clabel arguments himself. The contour

function, called with two output parameters, not only builds the level lines, but

also finds the parameters required for the clabel. Use contourwith output

arguments CMatr and h (the CMatr array contains information about the level

lines, and the h array contains pointers). End the call to contour with a

semicolon to suppress the displaying of the output parameters and plot the grid:

» [CMatr, h] = contour(X, Y, Z);

» clabel(CMatr, h)

» grid on

78

 An additional argument to the contour function (just like contour3

described above) can be either the number of level lines or a vector containing

the function values for which you want to draw level lines.

 Visual information about the change in the function is given by filling a

rectangle on the xy plane with a color depending on the value of the function at

the points of the plane. The contourf function is intended for building such

graphs. Its use is the same as contour. The following example displays a graph

that consists of twenty level lines, and the gaps between them are filled with

colors corresponding to the values of the function under study:

» contourf(X, Y, Z, 20)

» colorbar

 4.1.5. Functions graphs designing

 A simple and effective way to change the color scheme of a graph is to set

the color palette using the colormap function. The following example

demonstrates preparing a function graph for printing on a monochrome printer

using the gray palette

» surfc(X, Y, Z)

» colorbar

» colormap(gray)

» title(' Function Graph z(x,y)')

» xlabel('x')

» ylabel('у')

» zlabel('z')

 Note that the colormap(gray) command changes the palette of the

graphics window, i.e. the following graphs will also be displayed in this window

in gray tones. To restore the original palette value, use the colormap('default')

command. The color palettes available in MATLAB are shown in table 4.2.

79

 4.1.6. Displaying multiple graphs on one axis

 To display several graphs of one variable functions on the same axes, the

capabilities of the plot, plotyy, semilogx, semilogy, loglog functions were used.

They allow you to display graphs of several functions by specifying the

corresponding vector arguments in pairs, for example plot (x, f, x, g). However,

they cannot be used to unite 3D plots.

 Table 4.2 – Color palettes

Palette Color change

autumn Smooth change red – orange – yellow

bone Similar to the gray palette, but with a slight shade of blue

colorcube Each color changes from dark to bright

cool Shades of cyan and magenta

copper Shades of copper

flag Cyclic change red – white – blue – black

gray Shades of gray

hot Smooth change black – red – orange – yellow – white

hsv Smooth change like the colors of the rainbow

jet Smooth change blue – cyan – red – green – yellow – red

pink Similar to the gray palette, but with a slight shade of brown

prism Cyclic change red – orange – yellow – green – blue – purple

spring Shades of magenta and yellow

summer Shades of green and yellow

vga Windows palette of sixteen colors

white One white color

winter Shade of blue and green

To unite such graphs, use the hold on command. It should be set before

building a graph. In the following example, two graphs unit (plane and cone)

results in their intersection. The cone is defined parametrically by the following

dependencies:

vuv,ux cos3,0)( ; vuv,uy sin 3,0)( ; uv,uz  6,0)(; ,v,u  2[]2 .

80

 To graphically display a cone, you first need to generate a column vector

and a row vector using a colon. These vectors contain the values of the

parameters on a given interval (it is important that u is a column vector, and v is

a row vector):

» u = [-2*pi:0.1*pi:2*pi]';

» v = [-2*pi:0.1*pi:2*pi];

 Next, the matrices X, Y, are formed, containing the values of the functions

)(v,ux and)(v,uy at the points corresponding to the values of the parameters.

Formation of matrices is performed using the outer product of vectors.

 Comment 2

 The outer product of vectors)(1 Nj a,...,a,...,aa  ,)(1 Mk b,...,b,...,bb  is

a matrix),(jkcC  ,N,j 1 M,k 1 of size N  M, whose elements are

calculated by the formula kjjk bac  .

 Vector а is a column vector and is represented in MATLAB as a two-

dimensional array of size N by one. The column vector b, when transposed, goes

into a row vector of size one by M. The column vector and the row vector are

matrices in which one of the dimensions is equal to one. In fact, С = abT, where

the multiplication occurs according to the matrix product rule. The asterisk

operator is used to calculate the matrix product in MATLAB. We calculate the

outer product for two vectors:

» a = [1;2;3];

» b = [5;6;7];

» C = a*b'

C =

81

 5 6 7

 10 12 14

 15 18 21

 Let's form the matrices X, Y, necessary for the graphical display of the

cone:

» X = 0.3*u*cos(v);

» Y = 0.3*u*sin(v);

 The Z matrix must be the same size as the X and Y matrices. In addition, it

must contain values that correspond to the parameter values. If the function

)(v,uz included the product of и and v, hen the matrix Z could be filled similarly

to the matrices X and Y using the outer product. On the other hand, the function

z(u,vcan be represented as)(6,0)(vguv,uz  , where 1)(vg .Therefore, to

calculate Z you can apply the outer product of vectors u and)(vg , where the

row vector)(vg has the same dimension as v, but consists of ones:

» Z = 0.6*u*ones(size(v));

 All the required matrices for the display of the cone have been created.

Plane is defined as follows:

» [X,Y] = meshgrid(-2:0.1:2);

» Z = 0.5*X+0.4*Y;

 Now it is not difficult to write down the complete sequence of commands

for constructing intersecting cone and plane:

» u = [-2*pi:0.1*pi:2*pi]';

82

» v = [-2*pi:0.1*pi:2*pi];

» X = 0.3*u*cos(v);

» Y = 0.3*u*sin(v);

» Z = 0.6*u*ones(size(v));

» surf(X, Y, Z)

» [X,Y] = meshgrid(-2:0.1:2);

» Z = 0.5*X+0.4*Y;

» hold on

» mesh(X, Y, Z)

» hidden off

 As a result of the program, we get the geometric figure shown in Fig. 4.1.

The hidden off command is used to show the part of the cone that is under

the plane.

Note that the hold on command applies to all subsequent plots to the

current window. To place graphs in new windows, execute the hold off

command. The hold on command can also be used to position several graphs of

one variable functions, for example,

» plot(x,f,х,g)

is equivalent to the sequence

» plot(х,f)

» hold on

» plot(x,g)

83

Figure 4.1. The result of the program

4.2. Individual tasks

 1. According the number N in the group register list, written in the form

N = СМ, where С is the rank of tens, М is the units rank, in the integer range

[N, N+5] calculate the table of values for the expression given using the table 4.3

and table 4.4.

2. Complete task 1 using negative step 1.

3. Display two graphs of the function)(xf from task 1 with steps of 1.0

and 0.05 in the interval [N, N+5] in a linear scale on the same axes.

Using the plotyy function, plot the graphs of the functions)(xf and

)sin()(10 2 xxf  in the interval [N, N+5] in increments of 0.1.

4. Complete task 3 using:

84

 logarithmic scale on both axes;

 logarithmic scale along the abscissa;

 logarithmic scale along the ordinate axis.

In this step, use six types of markers, six different line colors and different

types of lines.

5. Form a matrix and vector sizes, respectively, not less than 56 and 17.

Their first elements are your group journal number. Plot vector and matrix

graphs.

6. Give the graph of the function z(x, у) = х2 + у2 on the defenition area in

the form of a square х  [0, l], y  [0, l] with a step of 0.2 and a graph of a

function with a smaller grid step.

7. Construct a transparent and opaque wireframe surface for a function

)1()1()5,1cos()2sin(4),(2 yyxyxyxz  on a rectangular defenition

area х  [l, l], y  [0, l].

Modify the function)(y,xz in some way so that your group register list

number appears in the function expression. Report transparent and opaque

wireframe surface for your function.

8. Build the wireframe surface of the function)(y,xz using the

surf(X,Y,Z), shading flat, shading interp commands and report them.

9. Build the wireframe surface of the function)(y,xz using the

surf(X,Y,Z) and colorbar commands. Report the results.

10. Build the wireframe surface of the function)(y,xz using the surfс,

meshc and colorbar commands. Report the results.

11. Build the surfaces of the function)(y,xz , consisting of level lines

using the contour3 function with three and four arguments. Report the results.

12. Build contour plots of the function)(y,xz using the contour, contourf,

clabel functions. Report the results.

13. Perform three different color schemes for the)(y,xz function graph.

Report the results.

85

14. Draw an intersecting cone and plane.

15. Cross the cone with two different planes.

 16. Design a laboratory report.

 Table 4.3 – Individual task for the units rank М of the number in group

register

The units

rank М of the

number in

group

register

0 or 5 1 or 6 2 or 7 3 or 8 4 or 9

Expression
2

332

)(DB

CA /





DA

ABC

2

231 C/D

BA
/



5 23

1

52

AB

DC /





232

3

BC

DAC
/ 



 Table 4.4 – Individual task for the rank of tens С of the number in group

register

The rank

of tens С

of the

number in

group

register

A B C D

0 2)))cos((sin(NN N/N))2(ln( 22))(exp(N/N BA

1 2))1(cos(1  N 22))(ln(N 1)exp(N CA

2 12))(tg( NN 2))(log(N)exp(1 N/N CB /

3 4))(ctg()sin(N/N)log(33 NN )exp(N/N )/(BAC 

86

Laboratory work 5

RESEARCH OF FUZZY SETS FORMATION WAYS AND FUZZY SETS

OPERATIONS

 The purpose of the laboratory work is to obtain and consolidate

knowledge, to develop practical skills for constructing fuzzy sets using various

types of membership functions and to introduce to the most common logical

operations on fuzzy sets

5.1. Summary of theory

 5.1.1. Membership functions

 Triangle membership function

 The Fuzzy Logic Tools (FLT) as part of the MATLAB package contains

11 built-in types of membership functions (MF), formed on the basis of

piecewise linear functions, Gaussian distribution, sigmoid curve, quadratic and

cubic polynomial curves. The simplest MFs are triangular and trapezoidal. The

name of the triangular MF is trimf (triangle membership function).

Parametrically, it is nothing more than a set of three points that form a triangle.

 Function description:

у = trimf (x, [a, b, с]),

where the vector x is the base set on which the FP is determined. The values a

and c define the base of the triangle, b defines its vertex.

 Analytically, the triangular MF can be specified as follows (Fig 5.1, а):

87





























.,0

,,

,,

,,0

),,,(

cx

cxb
bc

xc

bxa
ab

ax
ax

cbaxf

 а b

Figure 5.1. Triangular (a) and trapezoidal (b) membership functions

 Next, we will consider examples of using various MFs in the system.

 Examples are fragments of programs and comments in the MATLAB

package language.

 Example 5.1. MF trimf program.

» х = 0 : 0,1 : 10;

» у = trimf (x, [3 6 8]);

» plot (х, у);

» xlabel ('trimf (x, P), P = [3 6 8]');

 Trapezoidal membership function

 Trapezoidal MF trapmf (trapezoid membership function) differs from the

previous function only in that it has an upper base.

88

 Function description:

у = trapmf (х, [a, b, с, d]),

where parameters a and d are the lower base of the trapezoid; b and c are the

upper base of the trapezoid (Figure 5.1, б).

 The analytical record of the trapezoidal function is as follows:































. ,0

, ,

, ,1

, ,

, ,0

),,,,(

dx

dxc
cd

xd
cxb

bxa
ab

ax
ax

dcbaxf

 Simple and two-sided Gaussian membership function

 On the basis of the Gaussian distribution function, you can construct an

MF of two types. First type is a simple Gaussian membership function and a the

second type is two-sided one, formed using various Gaussian distribution

functions. The first is gaussmf and the second is gauss2mf.

 Function description:

у = gaussmf (x, [σ, с]).

 Example 5.2. MF gaussmf program.

» X = -20 : 1 : 20;

» Y = gaussmf (х, [4 5]);

» plot (х, у);

89

 Symmetric Gaussian function depends on two parameters σ and с

(Fig. 5.2, а):

.),,(
2

2

2

)(







cx

ecxf

 а b

Figure 5.2. Simple (a) and two-sided (b) Gaussian membership functions

 Function description:

у = gauss2mf (x, [σ1, с1, σ2, c2]).

 The last expression is a combination of two different Gaussian

distribution functions. The first is determined by parameters σ1 and с1 and sets

the shape of the left side, and the second one (parameters σ2, c2) sets the shape of

the MF’s rright side.

 If с1 < c2, then function gauss2mf reaches its maximum value at level 1.

Otherwise, the maximum value of the function is less than 1 (Fig. 5.2, b).

 Example 5.3. MF gauss2mf program.

» x= [-20 : 30]';

» y1 = gauss2mf (x, [4 3 6 7]);

90

» y2 = gauss2mf (x, [4 4 6 8]);

» y3 = gauss2mf (x, [4 5 6 9]);

» plot (x,[y1 y2 y3]);

 The < ' > symbol in the definition line of the base set x indicates the

transposition of the base set.

 Generalized bell-shaped membership function

 The next function that allows you to represent fuzzy subjective

preferences is the generalized bell-shaped MF (Fig. 5.3) which is denoted

gbellmf (generalized bell shape membership function).

I

Figure 5.3. Generalized bell-shaped membership function

 Its difference from the previously considered MF is that a third parameter

is added here, which allows a smooth transition between fuzzy sets.

 Function description:

у = gbellmf (x, [а, b, с]).

https://www.mathworks.com/help/fuzzy/gbellmf.html
https://www.mathworks.com/help/fuzzy/gbellmf.html

91

 Generalized bell-shaped function depends on three parameters and has the

following analytical record:

,

1

1
)(

2b

a

cx
c,b,a,xf






where с determines the location of the MF center; а and b affect the shape of the

curve (Fig. 5.3).

 Example 5.4. MF gbellmf program.

» x= [-20 : 20];

» y = gbellmf (x, [4 5 6]);

» plot (x,y);

 Membership functions based on the Gaussian distribution function and the

generalized bell-shape MF differ by their smoothness and simplicity of writing

and are most used in fuzzy sets describing. Despite the fact that Gaussian and

bell-shaped MFs possess the property of smoothness, they do not allow the

formation of asymmetric MFs. For these purposes, a set of sigmoid functions is

provided that can be opened either on the left or on the right, depending on the

type of function. Symmetrical and closed functions are synthesized using two

additional sigmoids.

 Sigmoid membership functions

 The main sigmoid MF is designated as sigmf, and the additional ones are

dsigmf and psigmf.

 Description of the main sigmoid function:

92

у = sigmf (х, [a, с]).

 Analytically, the sigmoid function sigmf is written as follows:

.
e

c,a,xf
cxa)(1

1
)(




 Depending on the sign of the parameter a, the considered MF will be open

either to the right or to the left (Fig. 5.4, a). This will make it possible to apply it

when describing such fuzzy concepts as "very large", "extremely negative", etc.

 Description of the additional sigmoid function:

у = dsigmf (x, (a1, c1, а2, с2]) .

 MF dsigmf depends on four parameters a1, c1, а2, с2 and is defined as the

difference of two sigmoid functions: f(х, a1, c1) – f(x, а2, с2) (Fig. 5.4, b).

 Additional sigmoid function description:

у = psigmf (x, [a1, c1, а2, с2]) .

 MF psigmf, like the previous function, depends on four parameters a1, c1,

а2, с2 and is defined as the product of two sigmoid functions f(х, a1, c1)

f(x, а2, с2) (Fig. 5.4, c).

93

 а b c

Figure 5.4. Sigmoid membership functions

 Example 5.5. Sigmoid functions using program.

» x= [0 : 10];

» subplot (1, 3, 1);

» y=sigmf (x,[4 5]);

» plot (x, y);

» subplot (1, 3, 2);

» y = dsigmf (x, [4 5 6 9]);

» plot (x, y);

» subplot (1, 3, 3);

» y = psigmf (x, [4 5 6 9]);

» plot (x, y);

 Membership functions based on polynomial curves

 The fuzzy logic toolbox in MATLAB provides the ability to generate MFs

based on polynomial curves. The related functions are called Z- functions (zmf),

РI- functions (pimf) and S- functions (smf). The function zmf is an asymmetric

94

polynomial curve, that is opened on the left (Fig. 5.5, a), the function smf is a

mirror image of the function zmf (Fig. 5.5, c). Accordingly, the function pimf is

equal to zero in the right and left limits and takes a value equal to one in the

middle of a certain segment (Fig. 5.5, b).

 а b c

Figure 5.5. Polynomial membership functions

 Function description:

у = zmf(x, [a, b]).

 Parameters a and b determine the extreme values of the curve

(Figure 5.5, a).

Function description:

у = pimf (x, [a, b, с, d]).

95

 Parameters a and d set the function transition to a zero value, and

parameters b and c set the function transition to a unit value (Fig. 5.5, b).

Function Description:

у = smf (х, [а, b]).

 Parameters a and b determine the extreme values of the curve (Fig. 5.5, c).

 Example 5.6. Polynomial Curve Program.

» x= [3 : 10];

» subplot(1, 3, 1);

» y = zmf(x, [4 5]);

» plot (x, y);

» xlabel (' zmf, P = [4 5]');

» subplot (1, 3, 2);

» y = pimf(x, [4 5 6 9]);

» plot (x, y);

» xlabel ('pimf, P = [4 5 6 9]');

» subplot (1, 3, 3);

» y = smf (x, [6 9]);

» plot(x, y);

» xlabel ('smf, P=[6 9]')

 In addition to the functions discussed above that allow you to represent

fuzzy sets, MATLAB has the ability to create your own MFs or modify the

built-in ones.

 5.1.2. Fuzzy set operations

 There are three main logical operations with fuzzy sets: conjunction,

disjunction and logical negation. In the MATLAB environment, it is possible to

96

define conjunctive and disjunctive operators in terms of minimax and

probabilistic interpretations.

Consider the minimax interpretation of logical operators, in which the

conjunctive operator represents finding the minimum – min (Fig. 5.6, a), and the

disjunctive operator represents finding the maximum – max (Fig.5.6, b).

 а b

Figure 5.6. Intersection (a) and union (b) of fuzzy sets

(minimax interpretation)

 Description of conjunctive function: у = min ([у1; у2]).

 Disjunctive function description: у = mах ([у1; у2]).

 The parameters y1 and y2 represent the initial MFs. The min function

works with a list of MFs. In MATLAB, the list is formatted with square

brackets, and the list elements are separated by semicolons.

 Example 5.7. Program for using min and max operations.

» x = 3 : 0,1 : 10;

» subplot (1, 2, 1);

97

» y1 = gaussmf (x, [4 5]);

» у2 = gaussmf (x, [4 7]);

» у3 = min ([y1; y2]);

» plot (x, [y1; у2],':');

» hold on;

» plot (x, у3);

» hold off;

» subplot (1, 2, 2);

» у4 = max([y1; у2]);

» plot(x, [y1; у2], ':');

» hold on;

» plot (x, y4);

» hold off.

 The original MFs are shown with a dashed line on the graphs, and the

result of the action of logical operators is shown with a solid line.

The minimax interpretation is the most common in the construction of

fuzzy systems. Nevertheless, in practice, an alternative probabilistic

interpretation of conjunctive and disjunctive operators is often used. MATLAB

provides the corresponding functions.

 In the context of this interpretation, the conjunctive operator is the

operator for calculating the algebraic product – prod (Fig. 5.7, a), and the

disjunctive operator is the operator for calculating the algebraic sum – probоr

(Fig. 5.7, b).

98

 а b

Figure 5.7. Intersection (a) and union (b) of fuzzy sets

(probabilistic interpretation)

 Function description: у = prod ([y1; у2])

 Function description: у = probor([y1; у2]).

 The parameters y1 and y2 are the initial MFs.

 Example 5.8. A program for using probabilistic conjunction and

disjunction operators.

» х = 0 : 0,1 : 10;

» subplot (1, 2, 1);

» y1 = gaussmf (x, [4 5]);

» y2 = gaussmf (x, [4 7]);

» у3 = prod ([y1; y2]);

» plot (x, [y1; у2],':');

» hold on;

» plot(x, y3);

» hold off;

99

» subplot (1, 2, 2);

» y4 = probor ([y1; y2]);

» plot (x, [y1; y2], ':');

» hold on;

» plot(x, y4);

» hold off.

 The addition of a fuzzy set is nothing more than a mathematical

representation of the verbal expression "NOT A" (Fig. 5.8), where A is a fuzzy

set describing some vague judgment.

Figure 5.8. A fuzzy set addition

 Description of addition function: y = 1 – y*, where у* is an original MF.

 Example 5.9. A program for using addition operation.

» x= [0 : 10];

» y1 = gaussmf (x, [3 5]);

100

» y= 1 - y1;

» plot (x, y1, ':');

» hold on;

» plot(x, y);

» hold off

5.2. individual tasks

 1. Build a triangular and trapezoidal membership function.

 2. Build a simple and two-sided Gaussian membership function formed

using various distribution functions.

 3. Build a generalized bell-shaped membership function that allows you to

represent fuzzy subjective preferences.

 4. Build a set of sigmoid functions:

• Main one-sided function, which is open to the left or to the right;

• Additional two-sided function;

• Additional asymmetrical function.

 5. Build a set of polynomial membership functions (Z-,

PI- and S- functions).

 6. Build minimax interpretation of logical operators using minimum and

maximum search operations.

 7. Build a probabilistic interpretation of conjunctive and disjunctive

operators.

 8. Build addition of a fuzzy set, which describes a fuzzy proposition and is

a mathematical description of verbal expressions, that negates the fuzzy set.

 When performing items 1 – 8 of an individual task, the values of variables

a, b, c, d, etc. must be chosen arbitrarily.

9. Design the lab’s report.

101

Laboratory work 6

M-FILES AND BASICS OF PROGRAMMING IN MATLAB

 The purpose of laboratory work is to obtain and to consolidate

knowledge, to form practical skills of working with the MATLAB package

when using M-files and executing programs with a nonlinear structure.

6.1. Summary of theory

 6.1.1. Work in the M-file editor

Working from the MATLAB command line is difficult if you have to

enter many commands and change them frequently. Keeping a diary with the

diary command and saving the work environment only makes things a little

easier.

The most convenient way to execute MATLAB commands is to use

M-files, in which you can type commands, execute them all at once or in parts,

save them to a file and use them later. The M-file editor is intended for working

with M-files. With this editor, you can create your own functions and call them

even from the command line.

Open the File menu of the main MATLAB window. In the New item,

select the M-file sub-item. The new file opens in the M-file editor window.

Type commands in the editor that lead to the construction of two graphs in

one graphic window:

» x = [0:0.1:7];

» f = exp(-x);

» subplot(1, 2, 1)

» plot(x, f)

» g = sin(x);

102

» subplot(1, 2, 2)

» plot(x, g)

Now save a file named mydemo.m in the work subdirectory of the main

MATLAB directory by choosing the Save as item of the editor's File menu. To

run all the commands contained in the file for execution, select the Run item in

the Debug menu. The graphic window Figure No.1 will appear on the screen,

containing graphs of functions. If you decide to plot the cosine instead of the

sine, then change the line g = sin(x) in the M-file to g = cos(x) and run all the

commands again.

Comment 1

If an error is made while typing and MATLAB cannot recognize the

command, then the commands are executed before the incorrectly entered one.

After that, an error message is displayed in the command window.

A very convenient feature provided by the M-file editor is the execution

of part of the commands. Close the graphical window Figure No.1. Select with

the mouse, holding the left button, or with the arrow keys while holding down

the <Shift> key, the first four commands of the program and execute them from

the Evaluate Selection item of the Text menu. Please note that only one graph is

displayed in the graphics window, corresponding to the executed commands.

Remember that to execute some of the commands, select them and press <F9>.

Execute the remaining three commands of the program and monitor the state of

the graphics window. Practice it yourself, type in any examples from previous

labs in the M-file editor and run them.

Individual blocks of the M-file can be provided with comments that are

skipped during execution, but are convenient when working with the M-file.

Comments in MATLAB start with a percent sign and are automatically

highlighted in green, for example:

% plotting sin(x) in a separate window

103

Multiple files can be opened in the M-file editor at the same time. The

transition between files is carried out using the bookmarks with file names

located at the bottom of the editor window.

An existing M-file is opened using the Open item of the File menu of the

working environment, or the M-file editor. You can also open a file in the editor

using the MATLAB edit command from the command line, specifying the file

name as an argument, for example:

» edit mydemo

The edit command without an argument creates a new file.

All examples that are found in this and the following labs are best typed

and saved in M-files, supplemented with comments, and executed from the M-

file editor. Numerical Methods and Programming in MATLAB requires the

creation of M-Files.

 6.1.2. Types of M-files

There are two types of M-files in MATLAB: Script M-Files, which

contain a sequence of commands, and Function M-Files, which describe user-

defined functions.

You have created a Script M-File (Procedure file) when you have been

reading the previous subsection.

All variables declared in the Script M-File become available in the

working environment after its execution. Run the Script M-File from Section

6.1.1 in the M-file editor.

And type whos at the command line to view the contents of the working

environment. The description of the variables will appear in the command

window:

104

» whos

 Name Size Bytes Class

 f 1x71 568 double array

 g 1x71 568 double array

 x 1x71 568 double array

Grand total is 213 elements using 1704 bytes

Variables defined in one Script M-File can be used in other Script M-Files

and in commands executed from the command line. The execution of the

commands contained in the Script M-File is carried out in two ways:

1) from the editor of M-files as described above;

2) from the command line or another Script M-File, while the name of the

M-file is used as a command.

The use of the second way is much more convenient, especially if the

created Script M-File will be used repeatedly later. In fact, the generated M-file

becomes a command that MATLAB understands. Close all graphic windows

and type mydemo in the command line. A graphic window appears

corresponding to the commands in the mydemo.m Script M-File. After entering

the command mydemo MATLAB does the following:

 checks if the entered command is the name of any of the variables

defined in the working environment. If a variable is entered, then its value is

displayed;

 if no variable is entered, then MATLAB searches for the entered

command among the built-in functions. If the command turns out to be a built-in

function, then it is executed.

If a non-variable and non-built-in function is entered, MATLAB starts

searching for an M-file with the command name and .m extension. The search

starts from the Current Directory. If the M-file is not found in it, then MATLAB

searches the directories set in the search Path. The found M-file is executed in

MATLAB.

105

If none of the above actions led to success, then a message is displayed in

the command window, for example:

» mydem

??? Undefined function or variable 'mydem'.

Typically, M-files are stored in the user's directory. For MATLAB to find

them, you must set the paths that indicate the location of the M-files.

Comment 2

There are two reasons why you should keep your own M-files outside the

main MATLAB directory. First, when you reinstall MATLAB, files that are

contained in subdirectories of the main MATLAB directory may be destroyed.

Second, when MATLAB starts up, all the files in the toolbox subdirectory are

allocated in the computer memory in some optimal way to increase

performance. If you wrote the M-file to this directory, then you can use it only

after MATLAB restarting.

 6.1.3. Paths setting

Starting with version 6 of MATLAB, it is possible to define the current

directory and search path. These properties are set either using the appropriate

dialog boxes, or using commands from the command line.

The current directory is determined in the Current Directory dialog box of

the working environment. The window is present in the working environment if

the Current Directory item of the View menu is selected.

The current directory is selected from the list. If it is not in the list, then it

can be added from the Browse for Folder dialog box, which is called by clicking

the button to the right of the list. The contents of the current directory are

displayed in the file table.

106

Search paths are defined in the Set Path dialog box of the path navigator,

which is accessed from the Set Path item of the File menu of the working

environment.

To add a directory, click the Add Folder button. In the resulting Browse

for Path dialog box, select the desired directory. Adding a directory with all its

subfolders is carried out by clicking the Add with Subfolders button. The path to

the added directory appears in the MATLAB search path field. The search order

corresponds to the location of the paths in this field. The first one to look at is

the directory, the path to which is located at the top of the list. The search order

can be changed or the path to a directory can be deleted. To do this, select the

directory in the MATLAB search path field and define its position using the

following buttons:

Move to Top  поместить вверх списка;

Move Up  move up one position;

Remove  remove from the list;

Move Down  move down one position;

Move to Bottom  move to the bottom of the list.

After making changes, you should save the information about the search

paths by clicking the Save button. Using the Default button, you can restore the

default settings, and Revert is used to return to the saved ones.

Commands for paths setting

The steps for paths setting in MATLAB 6.x are duplicated by commands.

The current directory is set with the cd command, for example cd c:\users\igor.

The cd command, called without an argument, display the path to the current

directory. To set paths, use the path command, called with two arguments:

path (path, 'c:\users\igor')  adds directory c:\users\igor with lowest

search priority;

path ('с: \users\igor',path)  adds directory c:\users\igor with highest

search priority.

107

Using the path command with no arguments results in a list of search

paths displayed on the screen. You can remove a path from the list using the

rmpath command:

rmpath ('с:\users\igor') removes the path to the directory c:\users\igor from the

list of paths.

Comment 3

Do not delete paths to directories unnecessarily, especially those whose

purpose you are not sure about. Removal may cause some of the functions

defined in MATLAB to become unavailable.

Example 6.1. Create in the root directory of drive D (or any other drive or

directory where students are allowed to create their own directories) a directory

with your last name, for example, WORK_IVANOV and write the M-file

mydemo.m under the name mydemo3.m there. Set the paths to the file and

demonstrate that the file is accessible from the command line. Report the results

in the lab report.

Solution option:

1. A directory WORK_IVANOV is created in the root directory of drive D.

2. The M-file mydemo.m is written to the WORK_IVANOV directory

under the name mydemo3.m.

3. Opens the Set Path dialog of the File menu of the working enviroment

MATLAB.

4. The Add Folder button is clicked, and a directory WORK_IVANOV is

selected in the Browse for Path dialog box that appears.

5. Adding a directory with all its subfolders is carried out by clicking the

Add with Subfolders button. The path to the added directory appears in the

MATLAB search path field.

108

6. To store the path, press the Save key of the Set Path dialog box.

7. All actions are checked for correctness by typing the mydemo3

command from the command line. The graphic window Figure No.1 containing

graphs of functions will appear on the screen.

The above Script M-Files are a sequence of MATLAB commands; they

have no input and output arguments. To use numerical methods and when

programming your own applications in MATLAB, you must be able to compose

Function M-Files that perform the necessary actions with input arguments and

return the result in output arguments. In this subsection, a few simple examples

are discussed to help you understand how to work with Function M-Files.

Function M-Files, like Script M-Files, are created in the M-file editor.

 6.1.4. Function M-Files

 Function M-Files with one input argument

Suppose that in calculations it is often necessary to use the function

1,0

1
4

2





x

x
e x .

It is advisable to write a Function M-File once, and then call it wherever it

is necessary to calculate this function. Open a new file in the M-file editor and

type in the listing text

function f = myfun(x)

f= ехр(-х)*sqrt((х^2+1)/(х^4+0.1));

The word function on the first line specifies that the file contains a

Function M-File. The first line is the function header, which contains the

function name and lists of input and output arguments. In the example shown in

the listing, the function name is myfun, one input argument is x and one output

109

argument is f. The header is followed by the body of the function (in this

example it consists of one line), where its value is calculated. It is important that

the calculated value is written to f. A semicolon is supplied to prevent

unnecessary information from being displayed on the screen

Now save the file in your working directory. Please note that choosing the

Save or Save as item of the File menu brings up a file save dialog box, the File

name field of which already contains the name myfun. Do not change it, save the

Function M-File in a file with the suggested name.

Now the created function can be used in the same way as the built-in sin,

cos and others, for example from the command line:

» у = myfun(1.3)

у =

 0.2600

Own functions can be called from a Script M-File and from another

Function M-File.

Warning 1

The directory containing the Function M-Files must be current, or the

path to it must be added to the search paths, otherwise MATLAB will not find

the function or call another function with the same name instead (if it is in

searchable directories).

The Function M-File shown in the listing has one significant drawback.

Attempting to compute function values from an array results in an error, not an

array of values, as happens when evaluating built-in functions

» х = [1.3 7.2];

» у = myfun(x)

??? Error using ==> ^

110

Matrix must be square.

Error in ==> C:\MATLABRll\work\myfun.m

On line 2 ==> f = exp(-x)*sqrt((х^2+1)/(х^4+1));

If you have studied working with arrays, then eliminating this

disadvantage will not cause difficulties. It is necessary to use element-wise

operations when calculating the value of a function.

Modify the body of the function as shown in the following listing (don't

forget to save the changes in the myfun.m file)

function f = myfun(x)

f = ехр(-х).*sqrt((х.^2+1)./(х.^4+0.1));

Now the argument of the myfun function can be either a number, or a

vector or a matrix of values, for example:

» х = [1.3 7.2];

» у = myfun(x)

У =

 0.2600 0.0001

The variable y, into which the result of calling the myfun function is

written, automatically becomes a vector of the required size.

Plot the function myfun on the segment [0, 4] from the command line or

using a Script M-File:

x = [0:0.5:4];

у = myfun(x);

plot(x, у)

111

MATLAB provides another option for working with Function M-Files.

This is using them as arguments to some commands. For example, a special

function fplot is used to plot a graph, which replaces the sequence of commands

given above. When calling fplot, the name of the function whose graph you want

to plot is enclosed in apostrophes, the plotting limits are specified in a two-

element row vector fplot('myfun', [0, 4]).

Plot myfun graphs with plot and fplot on the same axes, with hold on.

Please note that the graph plotted with fplot more accurately reflects the

behavior of the function, since fplot selects the step of the argument, decreasing

it in the areas of fast change of the displayed function. Report the results in the

laboratory report

 Function M-Files with multiple input arguments

Writing Function M-Files with multiple input arguments is almost the

same as writing Function M-Files with one argument. All input arguments are

placed in a comma-separated list. For example, the following listing contains a

Function M-File that calculates the length of the radius vector of a point in

three-dimensional space .zyx 222 

Function M-File with multiple input arguments listing

function r = radius3(x, у, z)

r = sqrt(х.^2 + у.^2 + z.^2);

You can now use the radius3 function to calculate the length of the radius

vector, for example:

» R = radius3(1, 1, 1)

R =

 1.732

112

In addition to functions with multiple input arguments, MATLAB allows

you to create functions that return multiple values, i.e. having multiple output

arguments.

 Function M-File with multiple output arguments

Function M-Files with multiple output arguments are useful for evaluating

functions that return multiple values (called vector functions in mathematics).

Output arguments are added comma-separated to the list of output arguments,

and the list is enclosed in square brackets. A good example is a function that

converts time in seconds into hours, minutes, and seconds. This Function M-File

is shown in the following listing.

 Listing of the function for converting time in seconds into hours, minutes

and seconds

function [hour, minute, second] = hms(sec)

hour = floor(sec/3600);

minute = floor((sec-hour*3600)/60);

second = sec-hour*3600-minute*60;

When calling Function M-Files with multiple output arguments, the result

should be written to a vector of the appropriate length

» [Н, М, S] = hms(10000)

H =

 2

М =

 46

S =

 40

113

 6.1.5. Fundamentals of Programming in MATLAB

The Function M-Files and Script M-Files used in the previous subsections

are the simplest examples of programs. All MATLAB commands contained in

them are executed sequentially. To solve many more serious problems, it is

necessary to write programs in which actions are performed cyclically or,

depending on certain conditions, various parts of the programs are executed.

Consider the basic operators that specify the sequence of execution of

MATLAB commands. Operators can be used in both Script M-Files and

Function M-Files. This allows you to create programs with a complex branched

structure.

 Loop operator for

The operator is designed to perform a specified number of repetitive

actions. The simplest use of the for operator is as follows:

for count = start:step:final

% Next is the text of the program consisting of

MATLAB commands

end

Here count is a loop variable, start is its initial value, final is its final

value, and step is the step by which count is incremented each time the loop is

entered. The loop ends as soon as count becomes greater than final. The loop

variable can take not only integers, but also real values of any sign. Let's analyze

the use of the for loop operator using some typical examples.

Let it be required to derive a family of curves for ,x 0[]2 , which is

given by a function depending on the parameter ,xeaxy axsin),( for

parameter values from 0,1 to 0,1.

114

Type Script M-File in the M-file editor and save to file FORdem1.m, and

run it (from the M-file editor or from the command line by typing the FORdem1

command in it and pressing <Enter>):

% Script M-File for plotting a family of curves

x = [0:pi/30:2*pi];

for a = -0.1:0.02:0.1

 y = exp(-a*x).*sin(x);

 hold on

 plot(x, y)

end

As a result of FORdem1 execution, a graphic window will appear

(Fig. 6.1), which contains the required family of curves.

Figure 6.1. Execution result of FORdem1

115

Comment 4

The M-file editor automatically offers to place operators inside the loop,

indented from the left edge. Use this opportunity for the convenience of working

with the text of the program.

Develop a Script M-File to calculate the sum





10

1 !

1

k k
S .

The algorithm for calculating the sum uses the accumulation of the result,

i.e. at first the sum is zero (S = 0), then 1 is entered into the variable k, the 1/k! is

calculated, it is added to S and the result is again entered into S. Then k increases

by one, and the process continues until the last term becomes 1/10!. Script M-

File Fordem2, shown in the following listing, calculates the required amount.

Listing of the Script M-File Fordem2 for calculating the sum

% SCRIPT M-FILE FOR CALCULATING THE SUM

% 1/1!+1/2!+ … +1/10!

% Zeroing S to accumulate the amount

S = 0;

% accumulation of the amount in the cycle

for k = 1:10

 S = S + 1/factorial(k);

End

% outputting the result to the command window

S

Type Script M-File in the M-File editor, save it in the current directory in

the Fordem2.m file and execute it. The result will be displayed in the command

116

window, because the last line of the Script M-File S contains without a

semicolon to display the value of the variable S

S =

 1.7183

Please note that the rest of the lines of the Script M-File, which could

result in the display of intermediate values, are terminated with a semicolon to

suppress the output to the command window.

The first lines with comments are not accidentally separated by an empty

line from the rest of the program text. They are the ones that are displayed when

the user, using the help command from the command line, receives information

about what Fordem2 is doing.

» help Fordem2

 SCRIPT M-FILE TO CALCULATE SUM

 1/1!+1/2!+ … +1/10!

When developing Script M-file and Function M-file, do not neglect

comments!

All variables used in the Script M-file are made available in the working

environment. They are so-called global variables. On the other hand, Script M-

file can use all variables entered in the working environment.

Consider the problem of calculating the sum, similar to the previous one,

but depending on the variable x





10

1 !k

k

k

x
S .

117

To calculate this amount in Script M-file Fordem2, you need to change

the line inside the for loop to

S = S + x.^k/factorial(k);

Before running the program, you must define the x variable on the

command line using the following commands:

» x = 1.5;

» Fordem2

S =

 3.4817

A vector or a matrix can be used as x, since in Script M-file Fordem2,

elementwise operations were used when accumulating the sum.

Before starting Fordem2, you must assign a value to the x variable. And to

calculate the sum, for example, of fifteen terms, you will have to make changes

to the text of the Script M-file. It is much better to develop a generic Function

M-file that takes the value of x and the upper limit of the sum as input

arguments, and the value of the sum S(x) as its output arguments. The sumN

Function M-file is shown in the following listing.

Listing of Function M-file for calculating the sum

function S = sumN(x, N)

% Function M-file for calculating the sum

% x/1!+x^2/2!+ … +x^N/N!

% using: S = sumN(x, N)

% zeroing S to accumulate the sum

S = 0;

118

% accumulation of the amount in the cycle

for m = 1:1:N

 S = S + x.^m/factorial(m);

end

The user can learn about using the sumN function by typing help sumN at

the command line. The command window will display the first three lines with

comments, separated from the text of the Function M-file by an empty line.

Note that the variables of Function M-file are not global (m in sumN

Function M-file). Attempting to view the value of m from the command line

results in a message stating that m is undefined. If there is a global variable in

the working environment with the same name, defined from the command line

or in the Script M-file, then it has nothing to do with the local variable in the

Function M-file. As a rule, it is better to design your own algorithms in the form

of a Function M-file so that the variables used in the algorithm do not change

the values of the same global variables of the working environment.

For loops can be nested, while the variables of the nested loops must be

different.

The for loop is useful for performing repetitive, similar actions when the

number is predetermined. A more flexible while loop allows you to work around

this limitation.

 Loop operator while

Let's consider an example for calculating the sum, similar to the example

from the previous paragraph. It is required to calculate the sum of a series for a

given x (expansion in a series xsin):

.
k

x
xS

k

k
k











0

12

)!12(
)1()(

119

The sum can be accumulated as long as the terms are not too small, for

example, more in modulus .1010 The for loop is not enough here, since the

number of terms is not known in advance. The solution is to use a while loop

that runs as long as the loop condition is met:

while loop condition

 MATLAB commands

end

In this example, the loop condition provides that the current term !k/xk

is more than 1010 . A greater sign is used to write this condition. (>). Text of

mysin Function M-file, calculating the sum of a series, is shown in the following

listing.

Listing of mysin Function M-file calculating sine by series expansion

function S = mysin(x)

% Calculating sine by series expansion

% Using: y = mysin(x), -pi<x<pi

S = 0;

k = 0;

while abs(x.^(2*k+1)/factorial(2*k+1))>1.0e-10

 S = S + (-1)^k*x.^(2*k+1)/factorial(2*k+1);

 k = k + 1;

end

Note that the while loop, unlike for, does not have a loop variable, so we

had to assign zero to k before the loop began, and inside the loop we increased k

by one.

120

The while loop condition can contain more than only the > sign. To set the

conditions for the execution of the cycle, other relationship operations are also

allowed, given in table 6.1.

 Table 6.1 – Relationship operations

Designation Relationship operation

== Equality

< Less

> More

<= Less or equal

>= More or equal

= Not equal

More complex conditions are specified using logical operators. For

example, the condition 21  x consists in the simultaneous fulfillment of

two inequalities 1x фтв 2x and is written using the logical operator and

and(x >= -1, x < 2)

or equivalently with the symbol &

(x >= -1) & (x < 2)

Logical operators and examples of their use are given in table 6.2.

 Table 6.2 – Logical operators

Operator Condition MATLAB record Equivalent form

Logical "AND" 3x и 4k and(x < 3, k == 4) (x < 3) & (k == 4)

Logical "OR" 2 1,x  оr(x == 1,x == 2) (x == 1)  (x == 2)

Denying "NOT" 91.a  not(a == 1.9) (a == 1.9)

When calculating the sum of an infinite series, it makes sense to limit the

number of terms. If the series diverges due to the fact that its members do not

121

tend to zero, then the condition for a small value of the current term may never

be fulfilled and the program will loop. Perform summation by adding a limit on

the number of terms to the while loop condition of the mysin Function M-file:

while(abs(x.^(2*k+1)/factorial(2*k+1))>1.0e-10)&

(k<=10000))

or in equivalent form

while and(abs(x.^(2*k+1)/factorial(2*k+1))>1.0e-10),

k<=10000)

The organization of repetitive actions in the form of loops makes the

program simple and understandable; however, it is often required to execute one

or another block of commands depending on certain conditions, i.e. use

algorithm branching.

 Conditional operator if

The conditional if operator allows you to create a branching algorithm of

command execution in which, when certain conditions are met, the

corresponding block of MATLAB operators or commands runs.

The if operator can be used in its simple form to execute a block of

commands when a certain condition is satisfied, or in an if-elseif-else

construction to write branching algorithms.

Let it be required to calculate the expression 12 x . Suppose you are

performing calculations in the realm area and you want to display a warning that

the result is a complex number. Before evaluating the function, check the value

of the argument x and display a warning in the command window if the module

x does not exceed one. Here it is necessary to use the conditional operator if, the

application of which in the simplest case looks like this:

122

if condition

 commands MATLAB

end

If the condition is met, then the MATLAB commands placed between the

if and end are implemented, and if the condition is not met, then the transition to

the commands located after the end occurs. When recording a condition, the

operations shown in table 6.1 are used.

Function M-file, which checks the argument value, is shown in the

following listing. The warning command is used to display a warning in the

command window.

Listing of the Rfun Function M-file that checks the value of the argument

function f = Rfun(x)

% calculates sqrt(x^2-1)

% displays a warning if the result is complex

% using y = Rfun(x)

% argument validation

if abs(x)<1

 warning(' the result is complex

')

end

% function computation

f = sqrt(x^2-1);

Now calling Rfun from an argument which is less than one will lead to

displaying a warning to the command window:

» y = Rfun(0.2)

the result is complex

123

y =

 0 + 0.97979589711327i

The Rfun Function M-file only warns that its value is complex, and all

calculations with it continue. If the complex result means a calculation error,

then you should stop the execution of the function using the error command

instead of warning.

 Branching operator if-elseif-else

In general, the application of the branch operator if-elseif-else is as

follows:

if condition 1

 commands MATLAB

elseif condition 2

 commands MATLAB

………………………

elseif condition N

 commands MATLAB

else

 commands MATLAB

end

Depending on the fulfillment of one or another of the N conditions, the

corresponding branch of the program operates. If none of the N conditions are

met, then MATLAB commands placed after else are implemented. After

execution of any of the branches, the operator exits. There can be as many

branches as you want, or only two. In the case of two branches, the trailing else

is used and the elseif is skipped. A branch operator must always end with an end

operator.

124

Example of using the operator if-elseif-else, in which the value of the

variable a is analyzed and a message about the a value is displayed, is shown in

the following listing

function ifdem(a)

% example of using the operator if-elseif-else

if (a == 0)

 warning('а is equal to zero)

elseif a == 1

 warning('а is equal to one')

elseif a == 2

 warning('а is equal to two')

elseif a >= 3

 warning('а is greater than or equal to three ')

else

 warning('а is less than three, and not equal to

zero, one, two')

end

 Branching operator switch

A switch operator can be used to perform multiple selection or branching.

It is an alternative to the operator if-elseif-else. In general, the application of the

branching operator switch is as follows:

switch expression

 case value 1

 MATLAB commands

 case value 2

 MATLAB commands

…………………………………

125

 case value N

 MATLAB commands

 case { value N+1, value N+2, …}

 MATLAB commands

…………………………………

 case { value NM+1, value NM+2,…}

 otherwise

 MATLAB commands

end

This operator first evaluates the value of the expression (it can be a scalar

numeric value or a string of characters). This value is then compared with the

values: value 1, value 2, …, value N, value N+1, value N+2, …, value NM+1,

value NM+2,… (which can also be numeric or string). If a match is found, then

the MATLAB commands after the corresponding keyword case are executed.

Otherwise, MATLAB commands between the otherwise and end keywords are

executed.

There can be any number of lines with the case keyword, but there must

be one line with the otherwise keyword.

After executing any of the branches, the switch is exited, while the values

specified in other case are not checked.

The use of switch clarifies the following example:

function demswitch(x)

a = 10/5 + x

switch a

 case -1

 warning('a = -1')

 case 0

126

 warning('a = 0')

 case 1

 warning('a = 1')

 case {2, 3, 4}

 warning('a equals 2 or 3 or 4')

otherwise

 warning('a is not equal to -1, 0, 1, 2, 3,

4')

end

» x = -4

demswitch(x)

a = -2

» x = 1

demswitch(x)

a = 3

Warning:a equals 2 or 3 or 4

 Cycle interruption operator break

When organizing cyclic computations, care should be taken to avoid

errors inside the loop. For example, suppose you are given an array x consisting

of integers, and you need to form a new array y according to the rule

y(i) = x(i + 1) / x(i).

Obviously, the problem can be solved using the for loop. But if one of the

elements of the original array is equal to zero, then the division will result in inf,

and subsequent calculations may be useless.

This situation can be prevented by exiting the loop if the current value x(i)

is equal to zero. The following code fragment demonstrates the use of the break

operator to interrupt a loop:

127

for x = 1:20

z = x-8;

 if z==0

 break

 end

 y = x/z

end

As soon as z becomes 0, the loop is aborted.

The break operator allows you to prematurely terminate the execution of

for and while loops. Outside of these loops, the break operator does not work.

If the break operator is used in a nested loop, then it exits only from the

inner loop.

6.2. Individual tasks

1. Create M-file mydemo.m.

2. Create in the root directory of drive D (or any other drive or directory

where students are allowed to create their own directories) a directory with your

last name, for example, WORK_IVANOV, and create the M-file mydemo.m

under the name mydemo3.m there. Set the paths to the file and demonstrate that

the file is accessible from the command line.

3. Plot the Function M-file myfun using the plot and fplot commands on

the same axes (using hold on).

4. Develop the Function M-file root2, which only calculates the real roots

of a quadratic equation (and gives an error if there are complex roots). In the

demos, the second coefficient of the quadratic equation should be equal to your

group jornal number.

5. Develop the Function M-file, that calculates the greatest common

divisor (GCD) z of two natural numbers x and y using Euclid's algorithm. In one

128

of the demo examples the greatest common divisor should be 3N+1, where N is

your group jornal number.

Reference Information. The idea behind Euclid's algorithm is based on the

fact that if z GCD),(y,x then if the numbers are x and y equal GCD z

coincides with x and y, and in the case of inequality of numbers x and y their

difference between larger and smaller, together with the smaller number, has the

same greatest common divisor. The algorithm for determining Euclid's GCD can

be written as follows:

Step 1. If x > y, then go to step 4.

Step 2. If x < y, then go to step 5, otherwise go to step 3.

Step 3. z = x. The end.

Step 4. Subtract y from x and assume that this difference is now equal to

the value of x. Go to step 1.

Step 5. Subtract x from y and assume that this difference is now equal to

the value of y. Go to step 1.

6. Develop Function M-file, that calculates prime numbers not exceeding

150+10N, where N is your group jornal number.

Reference Information. Positive integers are called prime numbers that are

greater than one, which are divisible only by themselves and one without a

remainder. One of the simplest algorithms for obtaining primes not exceeding n

is the algorithm of Eratosthenes, called the sieve of Eratosthenes. It consists of

the following steps:

Step 1. Write out sequentially all integers, starting with two and ending

with n.

Step 2. Specifies the number of p = 2.

Step 3. If np 2 , then go to step 4, otherwise go to step 6.

Step 4. In a sequence of numbers, starting with the numberp + 1, cross out

all numbers that are multiples of p, not paying attention to the fact that some of

the numbers may have already been crossed out.

129

Step 5. Consider the first uncrossed number of the sequence after the

number p as the new value of the number p. Return to step 3 of the algorithm.

Step 6. The process is over. All uncrossed numbers in the sequence are

prime.

7. Calculate the sum of the prime numbers found in the task 6.

8. Design a laboratory report.

130

Laboratory work 7

FUZZY CLUSTERING ALGORITHM RESEARCH

 The purpose of laboratory work is to obtain and consolidate knowledge

about the fuzzy clustering algorithm, to form practical skills for solving

clustering problems using fuzzy logic methods.

7.1. Summary of theory

 7.1.1. FCM- clustering algorithm

 The fuzzy clustering algorithm is called FCM- algorithm (Fuzzy Classifier

Means, Fuzzy C-Means). The purpose of the FCM clustering algorithm is to

automatically classify a set of objects that are specified by feature vectors in the

feature space. In other words, such an algorithm identifies clusters and classifies

objects accordingly. Clusters are represented by fuzzy sets, and furthermore, the

boundaries between clusters are also fuzzy.

 The FCM-clustering algorithm assumes that objects belong to all clusters

with a specific MF. The degree of belonging is determined by the distance from

the object to the corresponding cluster centers. This algorithm iteratively

calculates the centers of clusters and new degrees of belonging of objects.

 For a given number K of input vectors хk (Kk ,1) and N allocated

clusters сj (Nj ,1) any хk belongs to any сj (Nj ,1) with membership µjk 

[0,1], where j is the cluster number, and k is the input vector number.

 The following standardization conditions are taken into account for µjk:













N

k
jk

N

j
jk

.N,...,jK

K,...,k

1

1

1 ,0

;1 ,1

131

 The goal of the algorithm is to minimize the sum of all weighted distances

jk cx 

min)(
1 1


 

N

j

K

k
jk

q
jk cx ,

where q is fixed parameter set before iterations.

 To achieve the above goal, it is necessary to solve the following system of

equations:

.Njcx
c

KkNjcx

N

j

K

k
jk

q
jk

j

N

j

K

k
jk

q
jk

jk

,1 ,0)(

,,1 ,,1 ,0)(

1 1

1 1











































 

 

 Together with the normalization conditions µjk this system of equations

has the following solution:

.N j

x

c
K

k

q
jk

N

j
k

q
jk

j 1, ,

)(

)(

1

1
















(weighted center of gravity) and

.KkNj

cx

cx

N

j)q(
jk

)q(
jk

jk ,1 ,,1 ,

1

1

1 1
1

1
1

























 



132

 The fuzzy clustering algorithm is performed step by step.

 Step 1. Initialization.

The following options are selected:

– the required number of clustersN, 2 < N < К;

– the type of distance (for example, Euclidean distance);

– fixed parameter q (usually1,5);

– the initial (at the zero iteration) matrix of the membership functions

(0)0)(jk
)(U  of objects хk (Kk ,1) taking into account the given initial

centers of the clusters сj (Nj ,1).

 Step 2. Clusters centers positions)(t
jc regulation.

 At the t-th iteration step, with a known matrix
)(t

jk the)(t
jc is calculated in

accordance with the above solution to the system of equations.

 Step 3. Correction of membership values µjk.

 Given the known)(t
jc ,

)(t
jk are calculated if jk cx  , otherwise:

 Step 4. Stopping the algorithm.

The fuzzy clustering algorithm stops when the following condition is met:

,)()1( tt UU

where || || is a matrix norm (for example, Euclidean norm);  is preset level of

accuracy.

133

 7.1.2. Solving clustering problems

 There are two ways to solve clustering problems in MATLAB: using the

command line or using the graphical user interface. Let's consider the first of

these methods.

To find the centers of clusters, MATLAB has a built-in function fcm,

which is described below.

Function Description:).,(],,[cluster_ndatafcmobj_fcnUcenter 

 The arguments to this function are:

1) data is a set of data to be clustered, each line describes a point in a

multidimensional space of characteristics;

2) cluster_n is the number of clusters (more than one).

 The function returns the following parameters:

1) center is a matrix of cluster centers, each row of which contains the

coordinates of the center of an individual cluster;

2) U is the resulting matrix of the membership function;

3) obj_fcn is the value of the objective function at each iteration.

 Example 7.1. Fuzzy clustering program.

// loading data to be clustered from a file

» load fcmdata.dat;

// determination of the clustering center (two

clusters)

» [center, U, obj_fcm] = fcm(fсmdata, 2);

// determination of the maximum degree of membership

// of an individual data item in a cluster

»maxU = max(U);

// distribution of data matrix rows between

// corresponding clusters

»index1 = find (U(1, :) == maxU);

»index2 = find(U(2, :) = maxU);

134

// plotting data corresponding to the first cluster

»plot (fcmdata (index1, 1), fcmdata (index1, 2),'

ko', 'markersize', 5, 'LineWidth' ,1);

»hold on

// plotting data corresponding to the second cluster

»plot(fcmdata (index2, 1), fcmdata(index2, 2), 'kx',

'markersize', 5, 'LineWidth', 1);

// plotting cluster centers

»plot(center(1, 1), center(1, 2), 'ko', 'markersize',

15, 'LineWidth', 2)

»plot (center (2, 1), center (2, 2), 'kx',

'markersize', 15, 'LineWidth', 2)

 The set of data that are subject to clustering, and the found cluster centers

for example 7.1 are shown in Fig. 7.1.

 The fcm function is executed iteratively as long as the changes in the

objective function exceed some predetermined threshold.

 At each step in the MATLAB command window, the serial number of the

iteration and the corresponding current value of the objective function are

displayed (Table 7.1).

135

Figure 7.1. The set of analyzed data centers and clusters centers

 Table 7.1 – Changing the objective function

Iteration

number

Objective function values Iteration

number

Objective function values

1 8,94 7 3,81

2 7,31 8 3,80

3 6,90 9 3,79

4 5,41 10 3,79

5 4,08 11 3,79

6 3,83 12 3,78

 To assess the dynamics of changes in the values of the objective function,

the plot(obj_fcm) command is used. The results of Example 7.1 are shown in

Fig. 7.2.

136

Figure 7.2. Graph of changes in the values of the objective function

 The clustering function can be called with an additional set of parameters:

fcm (data, cluster_n, options). Additional arguments are used to control the

clustering process:

– options(1) is the exponent for the matrix U (default: 2.0);

– options(2) is the maximum number of iterations (default: 100);

– options(3) is the minimum allowable change in the values of the

objective function (default: 1е–5);

– options(4) is the display of information at each step (default: 1).

 Here is the example of fcm function definition with additional parameters:

[center, U, obj_fcn] = fсm(fcmdata, 2, [2, 100, le–5, 1]).

 The second way to solve clustering problems in MATLAB is invoked by

the findcluster command. The main window of the clustering tool is shown in

Fig. 7.3.

137

Figure 7.3. Clustering Main Window in MATLAB

 The <Load Data> button is used to load the source data to be clustered in

the following format: each line is a point in the multidimensional space of

characteristics, the number of lines corresponds to the number of points (data

items). The graphic interpretation of the initial data can be observed in the

window of the same name in the main window of the tool.

 The choice of the type of clustering algorithm is carried out using the

Methods drop-down menu (menu item – fcm). Next, the parameters of the

clustering algorithm are determined:

– number of clusters (input line – Cluster Num);

– maximum number of iterations (input line – Мах Iteration);

– the minimum value of the objective function improvement (input line –

Min. Improvement);

138

– exponent at matrix MF (input line – Exponent).

 After determining the required values of the specified parameters, the

clustering algorithm is launched using the <Start> button. The number of

iterations performed and the value of the objective function can be viewed in the

lower part of the main window of the clustering tool.

The coordinates of the found cluster centers can be saved by clicking the

<Save Center ...> button. Each row of the matrix in the file is a set of

coordinates for a separate cluster. The number of rows corresponds to the

number of clusters.

7.2. individual tasks

 1. It is necessary to formulate a problem from the field of computer

technology or programming, for which an automatic classification of a set of

objects would be necessary. These objects are defined by feature vectors in the

feature space.

 2. Solve the formulated problem in MATLAB using the clustering

mechanism using fuzzy logic methods, while using the command line and

graphical user interface. When using the command line, the clustering function

must be called with an additional set of parameters.

 3. Find the centers of clusters and plot the graph of change in the values of

the objective function.

 4. Design a laboratory report.

139

Laboratory work 8

MODELING A FUZZY SYSTEM WITH FUZZY LOGIC TOOLS

 The purpose of laboratory work is to obtain and consolidate knowledge,

to form practical skills for constructing a fuzzy system using fuzzy logic tools.

8.1. Summary of theory

 MATLAB includes five basic graphical user interface (GUI) tools that

provide access to the fuzzy logic toolkit (FLT): fuzzy inference system (FIS)

editors, membership functions, inference rules, and rule viewers and inference

surfaces viewers tools. These tools are dynamically linked, and changes made in

one of them entail changes in others.

 The FIS editor provides the ability to form the designed system at a high

level of abstraction: the number of input and output variables, the name of the

variables.

 The membership function (MF) editor is used to define the shape of the

MF associated with each variable.

 The inference rule editor is used to edit the list of rules that determine the

behavior of the designed system.

 The Inference Rule Viewer is used for diagnostic purposes and can show,

for example, the activity of rules or the form of influence of individual MFs on

the result of fuzzy inference.

 The Inference Surface Viewer is used to display the dependence of the

system output on one or two inputs. In other words, it generates and outputs a

map of the inference surface developed by the FIS.

 FIS editor. Construction of fuzzy systems according to Mamdani. To build

the system being created type fuzzy command in the command line of the main

MATLAB window. The new FIS editor window contains an input variable,

140

designated input1, and an output variable, designated output1. By default, FLT

offers to create a FIS of the Mamdani type.

 In order to add a new variable, select the corresponding item in the Edit

menu (Add input is for an input variable, Add output is for an output variable).

Changing the name of a variable occurs in steps.

 Step 1. The variable that needs to be renamed is marked.

Step 2. The name of the variable is changed by default to the name

suggested by the user In the edit field.

 Saving the projected system to the MATLAB workspace (to a variable) is

performed using the File – Save to workspace as ... menu item. In this case, the

data is retained until the end of the MATLAB session. To save data on the disk

after the end of the session, the corresponding item of the same menu is used –

Save to disk as... .

 MF editor. The next step in building a fuzzy model using FLT is to

associate a set of MFs with each input and output variable. This operation is

performed in the MF editor in three ways, which can be activated:

 – by selecting the Edit Membership Functions ... item in the View menu;

 – by double-clicking on the image of the corresponding variable (input or

output);

 – by typing the mfedit operator on the command line.

 With the help of the MF editor, you can display and edit any MF

associated with all the input and output variables of the developed FIS.

 Binding the MF with a variable name is as follows:

 – a variable is selected by name from a set of graphic objects in the MF

editor window;

 – the range of change of values for the base variable and the visible range

for the current variable are indicated;

 – in the Edit menu, select the Add MFs... item. In the window that

appears, select the type of MF and their number.

141

 The MF of the current variable is edited in two ways: using the MF

graphic window or by changing the MF characteristics (name, type and

numerical parameters). When you select the required MF in the graphics

window, you can smoothly change the curve using the mouse.

Thus, when constructing a FIS, it is necessary using the MF editor to

determine the corresponding functions for each of the input and output variables.

 Inference rules editor. After the number of input and output variables is

indicated, their names are determined and the corresponding MFs are built, it is

necessary to include inference rules in FIS. To do this, select the Edit Rules...

item in the View menu or type the ruleedit command in the MATLAB command

line ruleedit.

 Based on the descriptions of the input and output variables defined in the

MF editor, the inference rules editor generates the structure of the rule

automatically. The user is only required to bind the values of the input and

output variables, choosing from the list of previously set MFs and to determine

the logical links between them. It is also allowed to use logical negation (NOT)

and change the weights of the rules in the range from 0 to 1.

 Inference rules can be displayed in the window in various formats, which

are defined by selecting the appropriate item on the Format submenu of the

Options menu. The default is the extended format for displaying inference rules.

(verbose form):

If (input_1 is[not] mf_1j1) <and, or>...(input_i is[not] mf_iji)...<and,or>

(input_n is[not] mf__njn) then

(output_1 is[not] mf_n + 1jn+1) <and, or>...

(output_k is[not] mf_k + njk+n) <and, or>...

(output_m is[not] mf_m + njm+n) (w),

142

where i is the number of the input variable; ji is the number of the MF of the i-th

variable; k is the number of the output variable; n is the number of input

variables; t is the number of output variables; w is the weight of the rule.

 Round brackets contain required parameters, square ones contain optional

parameters, and angular ones contain alternative parameters (one to choose

from).

 In addition to the default format, there are two more types of display

formats for rules: symbolic form and indexed form. The symbolic form is as

follows:

(input_1<~=,==>mf_1j1)<&, | >...

(input_i<~=,==>mf_iji)…<&, | >

(input_n<~=,==>mf_njn)=>

(output_1<~=,==>mf_n + 1jn+1)...<&, | >

(output_k<~=,==>mf_k + njk+n) <&, | >...

(output_m<~=,==>mf_m + njm≠n) (W)

 The difference between the symbolic form and the extended form is that

instead of verbal interpretation of bundles, symbolic is used (symbols <&> and

<|> respectively determine logical AND and logical OR, symbol <~> determines

logical negation, and symbol < => > is a separator of the conditional and final

parts of the rule (antecedent and consequent).

 The general description of the rule of output in index format can be

presented as follows:

[–]1j1…[–]iji…[–]njn[–]n + 1jn + 1…[–]k + njk +1…[–]m + njm + n(w):<1,2>.

 Here the order of the numbers corresponds to the order of the input

variables, and the symbol < , > divides the rule into conditional and final parts.

The serial number of the corresponding MF is written before the colon, the type

143

of logical connective is written after the colon (< 1 > is logical AND, < 2 > is

logical OR). Logical negation is specified by the symbol < – >.

 It can be argued that FIS was completely created after defining the rules

of output in the editor of the same name.

Example 8.1. Creation of FIS.

Consider the following situation. It is necessary to assess the degree of

investment attractiveness of a particular business project based on data on the

discount rate and payback period.

 Step 1. Call the editor to create the FIS by typing fuzzy on the command

line. Add an input variable by choosing the Add input item from the Edit menu.

As a result, we get the following FIS structure: two inputs, a Mamdani fuzzy

inference mechanism, one output. We declare the first variable as discont, and

the second one is period, which, respectively, will represent the discount rate

and the payback period of the business project. The name of the output variable,

on the basis of which a decision is made about the degree of investment

attractiveness of a business project, is set as rate. Let's save the created model

under the name Invest. The current state of the FIS editor window is shown in

Fig. 8.1.

144

Figure 8.1. Fuzzy inference editor window

 Step 2. We assign a set of MFs to each input and output variable. This

procedure is implemented in the MF editor. For discont, we define the range of

the base variable (Range) from 5 to 50 (unit of measure is percent). We select

the same range for its display (Display Range). Let's add three MFs, the type of

which is trimf. Sequentially highlighting individual MFs with the mouse, we

will assign names small, middle, big, respectively, to a small, medium and large

discount rate. The MF editor window in its current state is shown in Fig. 8.2. For

the variable period, the range of the base variable is set equal to [3, 36] (unit of

measurement is months), three MFs of the gaussmfc type are assigned with

names short, normal, long. Thus, the variable of the payback period of the

business project will take on the following values: short, normal and long

payback period.

145

Figure 8.2. MF editor window

Finally, we define for the rate variable: the base variable changes the value in

the range [0, 1], the semantics is described by three MFs of trimf' type with

names: bad, normal, good.

 Step 3. Step 3. The final stage in the FIS construction is to define a set of

rules that define the relationship between input and output variables. For this

purpose we define the following in the inference rules editor:

IF discont = small AND period = short THEN rate = good

IF discont = NOT small AND period = long THEN rate = bad

IF discont = middle AND period = normal THEN rate = normal

IF discont = big AND period = short THEN rate = normal

 The current state of the inference rules editor window is shown in

Fig. 8.3. The specified inference rules are represented in an extended display

format as follows:

146

if(discont is small) and (period is short) then (rate is goad) (1)

if(discont is not small) and (period is long) then (rate is bad) (1)

if(discont is middle) and (period is normal) then (rate is normal) (1)

if(discont is big) and (period is short) then (rate is normal) (1)

Figure 8.3. Inference rules editor window

 When changing the form to symbolic, the inference rules will look like

this:

(discont == small) & (period == short) => (rate == good) (1)

(discont ~= small) & (period == long) => (rate == bad) (1)

(discont == middle) & (period == normal) => (rate== normal) (1)

(discont == big) & (period == short) => (rate == normal) (1)

 Inference rules viewer tool. This inference rule viewer allows you to

display the fuzzy inference process and get the result. The main viewer window

consists of several graphical windows arranged in rows and columns. The

number of lines corresponds to the number of rules for fuzzy inference, and the

number of columns corresponds to the number of input and output variables

147

specified in the developed FIS. An additional graphic window is used to display

the result of fuzzy inference and defuzzification operation. Each window

displays the corresponding MF, the level of its cut (for input variables) and the

contribution of an individual MF to the overall result (for output variables).

 In the lower part of the main window, you can display the numbers of the

inference rules in different inference formats by marking them with the mouse.

To change the format in the Options menu, select the item Rule display format.

 Changing the values of input variables is allowed in two ways:

1) by entering a record of an input vector in the Input field, the dimension

of which is equal to the number of input variables;

2) by clicking in any graphics window that refers to the input variable.

 The input vector in each of these variants of the initial data definition will

define a set of red vertical lines.

 For the FIS considered in Example 8.1, with the input vector [15 10]

(discount rate is 15%, payback period of the business project is 10 months), the

result (degree of investment attractiveness) will be 0.639 (Fig. 8.4).

 Inference surfaces viewer tool. Inference surfaces viewer tool allows you

to build a 3D surface as a dependency of one of the output variables on two

input variables. The choice of input and output variables is carried out through

the drop-down menus of the main window of the considered software tool. The

number of lines to be drawn along the X and Y axes is defined in the X grids, Y

grids input fields. The inference surface corresponding to the inference rules of

Example 8.1 is shown in Fig. 8.5.

 Construction of Sugeno-type fuzzy systems. Let's consider the construction

of FIS by two editors – FIS and MF. To build a FIS of the Sugeno type, select

the New FIS  Sugeno item in the File menu. The number of input and output

variables is determined in the same way as when constructing a FIS of the

Mamdani type.

148

Figure 8.4. Inference rules viewer tool window

Figure 8.5. Inference surfaces viewer tool window

 MF editor. For FIS of the Sugeno type, the changes concern only the

scheme for determining the MF for the output variables. FLT in MATLAB

allows you to develop two types of fuzzy models. The first model is the zero-

order Sugeno fuzzy model. The fuzzy inference rule is as follows:

if x is A and у is В then z = k,

149

where А and В are fuzzy sets of the antecedent; k is a well-defined consequent

constant.

 To build such a model, when adding an MF, it is necessary to select the

constant type and set the numerical value of the corresponding constant as the

MF parameter. The second model is the first order Sugeno fuzzy model. For her,

the fuzzy inference rule is written as follows:

if x as A and у is В then z = p · x + q · y + r,

where р, q and r are constants.

 In this case, the MF type is linear. To determine the parameters of the MF,

it is necessary to enter a vector, the elements of which correspond to the

numerical values of the consequent constants.

The work with the editor of inference rules, as well as with the viewers of

rules and the surface of the inference, is carried out in the same way as in the

case of constructing a FIS according to Mamdani.

An example of Sugeno fuzzy inference using a zero-order fuzzy model

and the inference rules defined above is shown in Fig. 8.6 (the output variable

has three values: bad, normal, good, which are set, respectively, by three

constants – 0, 0.5, 1).

150

Figure 8.6. Inference rules viewer tool window (Sugeno inference)

8.2. Individual tasks

 1. It is necessary to formulate an abstract situation from the field of

computing or programming and build a fuzzy system for it using a graphical

user interface that provides access to the fuzzy logic toolkit and the editor of the

fuzzy inference system.

At the same time, the construction of a fuzzy system, in the first case,

should be based on the Mamdani principle, and in the second, should be based

on the Sugeno principle.

 2. When performing point 1 of an individual task, set different ranges of

variation of the input and output variables of the fuzzy system, as well as

different types of MFs.

 3. Construct a graphical display of the inference rules and the surface of

solutions of the formulated abstract situation.

 4. Comparative analysis of two fuzzy systems built on the principle of

Mamdani and Sugeno.

 5. Design the lab’s report.

151

REPORTS DESIGN REQUIREMENTS

Reports are drawn up in English using Microsoft Word and Times New

Roman font without hyphenation. Line spacing is one and a half, paragraph

indentation is 1.25 cm. Report volume is no more than 10 printed pages. The

report is prepared on A4 sheets using portrait orientation. Top, bottom and right

margins are 2.0 cm, left one is 3.0 cm. Headers size is 0 cm, and footers size is

2.0 cm. Numbering is performed at the bottom of the page, font size is 14 pt,

alignment is center.

The first line contains the last name and initials of the student, as well as

the number of the academic group. Font size is 12 pt, bold, italic, right

alignment.

The second line contains the work number printed in uppercase (font is

straight, bold, 14 pt, center alignment).

Next, one blank line after the work number the topic of the work is printed

in uppercase, (font is straight, bold, 14 pt, center alignment).

Then one blank line after the topic of the work the goal of the work is

printed. Font size is 14 pt, indent is 1.25 pt, alignment is justified.

Further, the results of the execution of all individual task points are

printed. The font of the text is 14 pt, paragraph indentation is 1.25 cm, alignment

is justified.

The conclusions of the work are given at the end. They are printed one

blank line after the results of the work. Font size is14 pt, indent is 1.25 pt,

justified alignment.

152

REFERENCES

 1. MATLAB Programming Fundamentals [Internet resource]. The

MathWorks – Natick, MA: MathWorks, 2021. – 1450 p. – Access mode:

https://www.mathworks.com/help/pdf_doc/matlab/matlab_prog.pdf.

 2. Otto S.R. An Introduction to Programming and Numerical

Methods in MATLAB / S.R. Otto, J.P. Denier. – London: Springer, 2005. –

468 p.

 3. Young T. Introduction to Numerical Methods and Matlab

Programming for Engineers / T. Young, M. J. Mohlenkamp – Athens: Ohio

University, 2021. – 182 p.

 4. Zimmermann H.J. Fuzzy Set Theory-and Its Applications /

H. J. Zimmermann. – New York: Springer Science+Business Media, 2001. –

525 p.

 5. Hooda D.S. Fuzzy Logic Models and Fuzzy Control. An Introduction/

D.S. Hooda, V. Raich – UK: Alpfa Science, 2017. – 408 p.

 6. MATLAB Mathematics [Internet resource]. The MathWorks – Natick,

MA: MathWorks, 2015. – 634 p. – Access mode: http://www.apmath.spbu.ru/

ru/staff/smirnovmn/files/math.pdf.

 7. Hunt B.R. A Guide to MATLAB for Beginners and Experienced Users

/ B.R. Hunt, R.L. Lipsman, J.M. Rosenberg. – USA: Cambridge University

Press, 2001. – 347 p.

 8. Bassanezi R.C. A First Course in Fuzzy Logic, Fuzzy Dynamical

Systems, and Biomathematics: Theory and Applications / R.C. Bassanezi. –

New York: Springer Science, 2017. – 304 p.

 9. Fuzzy Logic Toolbox: User's Guide / [Internet resource]. The

MathWorks – Natick, MA: MathWorks, 2018. – 528 p. – Access mode:

https://person.dibris.unige.it/masulli-francesco/lectures/ML-CI/lectures/MAT

LAB% 20fuzzy%20toolbox.pdf.

153

 10. Alavala Ch. R. Fuzzy Logic and Neural Networks Basic Concepts and

Applications/ Ch. R. Alavala. – Delhi: New Age international publishers, 2007.

– 276 p.

 11. Yang W.Y. Applied numerical methods using MATLAB /

W. Y. Yang, W. Cao, T. Chung, J. Morris. – A John Wiley & sons, inc.,

publication, 2005. – 511 p.

154

CONTENTS

Introduction ... 3

Laboratory work 1. Basic calculations in MATLAB package 5

1.1. Summary of theory ... 5

1.1.1. MATLAB Workspace ... 5

1.1.2. Arithmetic calculations .. 7

1.1.3. Сalculation result output formats ... 8

1.1.4. Elementary functions using.. 11

1.1.5. Working with complex numbers ... 15

1.2. Individual tasks... 16

Laboratory work 2. Basic calculations in MATLAB package using

variables and vectors ... 18

2.1. Summary of theory ... 18

2.1.1. Using variables in MATLAB .. 18

2.1.2. Workspace saving ... 21

2.1.3. Variable View.. 23

2.1.4. Working with arrays .. 25

2.2. Individual tasks... 38

Laboratory work 3. Basic calculations in Matlab package with the

use of matrices ... 40

3.1. Summary of theory ... 40

3.1.1. Different ways to enter matrices in MATLAB ... 40

3.1.2. Accessing matrices elements in the MATLAB package 42

3.1.3. Matrices operations in the MATLAB package: addition,

subtraction, multiplication, transposition and exponentiation 43

3.1.4. Multiplication of matrices and vectors .. 47

3.1.5. Linear equations systems solving ... 48

3.1.6. Block matrices ... 48

3.1.7. Rows and Columns Deleting ... 50

3.1.8. Filling matrices using indexing ... 51

155

3.1.9. Special matrices creating ... 53

3.1.10. Element-wise operations on matrices.. 56

3.1.11. Matrix visualization ... 57

3.2. Individual tasks... 58

Laboratory work 4. Building tables of values and graphs of functions

in the MATLAB package .. 61

4.1. Summary of theory ... 61

4.1.1. Building tables of one variable function values in the

MATLAB package .. 61

4.1.2. One variable functions plotting ... 66

4.1.3. Two variables functions plotting .. 72

4.1.4. Contour plots of two variables functions building 77

4.1.5. Functions graphs designing ... 78

4.1.6. Displaying multiple graphs on one axis .. 79

4.2. Individual tasks... 83

Laboratory work 5. Research of fuzzy sets formation ways and

fuzzy sets operations ... 86

5.1. Summary of theory ... 86

5.1.1. Membership functions ... 86

5.1.2. Fuzzy sets operations .. 95

5.2. Individual tasks... 100

Laboratory work 6. M-files and basics of programming in MATLAB 101

6.1. Summary of theory ... 101

6.1.1. Work in the M-file editor .. 101

6.1.2. Types of M-files .. 103

6.1.3. Paths setting ... 105

6.1.4. Function M-Files ... 108

6.1.5. Fundamentals of Programming in MATLAB ... 113

6.2. Individual tasks... 127

Laboratory work 7. Fuzzy clustering algorithm research............................... 130

7.1. Summary of theory ... 130

156

7.1.1. FCM- clustering algorithm .. 130

7.1.2. Solving clustering problems .. 133

7.2. Individual tasks... 138

Laboratory work 8. Modeling a fuzzy system with fuzzy logic tools 139

8.1. Summary of theory ... 139

8.2. Individual tasks... 150

Reports design requirements.. 151

References .. 152

157

NOTES

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

158

NOTES

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

159

NOTES

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Educational edition

ZAKOVOROTNIY Oleksandr

LIPCHANSKA Oksana

FUNDAMENTALS OF COMPUTATIONAL INTELLIGENCE

Part 1

Laboratory workshop

for full-time and part-time students

by Computer Engineering and Computer Science direction

(Engl. language)

The work for the publication was recommended by V. D. Dmitrienko

Responsible person for the release is S. Yu. Leonov

In the author's edition

Signed for publication 29.12.2021. Format 60 × 84 16
1 . Paper Copy Paper.

Printing – risography. Times New Roman Font. Accounting-publishing

sheet 6,4. Contractual price.

Publishing house NTU "KhPI".

61002, Kharkiv, Kirpichova str., 2

