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A UNIFORM GEOMETRICAL PRESENTATION OF A
QUANTUM SYSTEM EXPERIMENT

The methods of quantum physics penetrate today into various fields of theoretical
disciplines. In this paper, based on quantum mechanics principles, a uniform geometric model
of a quantum system experiment introduced. A phase space determined for quantum system
experiment in the form of two-dimensional topological torus. On this torus, the math
expectation of quantum system track defined as the wave function, along with the tensor of
quantum states entanglement. The tensor of quantum entanglement interpreted as the vector
basis of a local Euclidian space. The work intends the complex many-body system
applications. Refs.: 22 titles.
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The problem statement. The simulation of surrounding world is,
apparently, the number one attribute of intelligent creature inherent to either
living matter or artificial machines. This ability appears in simple cells and
reaches its height in the modern digital society. Another intrinsic feature of
intelligence is communication ability via specific language of symbols. The
higher intelligence level is, the richer language becomes. The third key
property of intelligence is building communities of interacting cells united by
common goals and rules.

The possession of the aforesaid properties transforms an arbitrary
manifold of common type intelligent cells into an integrated system. A set of
living cells forms a hierarchy of organs and subsystems of the body, which, in
turn, acts as an element of a higher rank system (swarm, family, etc.). In
general, the intellect as a phenomenon of biological or artificial nature has a
multi-level hierarchical character. The law of hierarchy was discovered in
ancient times and found its expression in many religious cultures.

Among the known communication languages, the Math language is,
perhaps, the most concise, capacious and abstract. Like other languages, the
Math arose from experience. Astrology and architecture inspired ancient sages
to develop geometry. The study of mechanics brought the infinitesimal
calculus. The Math development until the end of the 19-th century had been
accompanied by empirical observation, while matter objects of interest and
observation tools were commensurable. At that time, the differential and
integral calculus had been developed, along with classical functional analysis.
These disciplines were based on the concepts of absolute space and time
embodied in continuum hypothesis of real numbers.

The Cantor's set theory became the common platform of mathematical
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models of that time, though sharp discussions took place among the scientists.
On this background, the three-dimensional Cartesian space was transformed to
multidimensional Euclidean space. The latter one, in turn, expanded into the
complex number domain and the non-Euclidean tensor geometry on smooth
manifolds. The concept of Hilbert vector space (admitting generalization to
infinite case) played an important role in development the physics of small
particles (quanta) in the first half of the 20th century.

Empirical investigations in small particles realm triggered new ideas and
principles that contradicted known physical theories and their mathematical
description. The statistical uncertainty of experimental observations, the lack
of solid identification the small particles, the relativity of matter state
monitoring from a subjective point of view, the ill posed "instant" particle
state-to-impulse determination, made a lot perplexity in academia. The facts of
quantization of the measured values did not fit the classical insight of the
continual space and time. The many-body interaction caused a problem with
quantum correlations (entanglement). As a consequence, the wave function of
the system turned utterly cumbersome to analytical calculations. Experimental
physics in the first half of the 20th century desperately needed reorganization
the Math foundations to advance the theory of interactions.

The founder of the new mathematical theory of quantum mechanics
became the outstanding mathematician of the 20th century, John von
Neumann (1903 — 1957). Collaborating with adherents, von Neumann
developed the multi-rank set theory and the special sections of functional
analysis that absorbed new physical ideas and principles. These and other
results became the theoretical foundation of modern quantum physics. The
methods of quantum physics penetrate today into related sciences (quantum
information theory and coding, biology, medicine, sociology, linguistics, etc.).
However, the academic Math discipline still keeps being rather conservative
and heavily relies on classical approaches.

This paper aims a cognitive insight on quantum mechanics to aid a
multipolar object investigation.

Related publications survey. The genesis of quantum mechanics aids
better understanding its role in the modern system analysis. The quantum
mechanics was originated from the "matrix mechanics" of W. Heisenberg,
M. Born and P. Jordan ([1], 1925) and "wave mechanics" Erwin Schrodinger
([2], [3], 1926). Later, von Neumann showed the equivalence between the
wave mechanics built in terms of integral operators and matrix mechanics,
([4], 1932).

However, the new facts of experimental physics were still challenging
the classical mathematics based on Cantor's set theory ([5], 1883). An
impressive contribution to Math foundation of quantum physics was made by
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J. von Neumann. In 1927-29 Neumann published seven articles on math
foundation of quantum mechanics; one of them originated new set theory ([6],
1928). These results were generalized by Neumann in his monograph ([4],
1932). Subsequent works by J. von Neumann, C. Godel, and P. Bernays
resulted in a novel axiomatic set theory, aka NBG, ([7], 1937). The Neumann's
approach to set theory is distinguished by ranking the sets by ordered classes.
That understanding tunes the modern view on systems hierarchy in nature and
human life. The hierarchy of classes helps to eliminate known logical
contradictions inherent to Cantor "naive sets theory", as well as enables
construction of high order grammars with limited complexity at each level.

Authoritative experts consider Neumann's works still being the most
rigorous apparatus of quantum physics, although rather cumbersome and
complex ([8], 2018). Apparently, this complexity is paid for aspiration to
harmonize the Hilbert function analysis with the finite scale reality [9]. The
comprehensive study of this issue covers entire section of Neumann's quantum
mechanics. Ultimately, a new math discipline was developed by Neumann,
aka spectral theory of linear operators in Hilbert space [10].

The key point of Neumann's quantum mechanics focuses the so called
eigenvalue problem [11]. This problem arises whenever inverse task of
mathematical physics studied for algebraic, differential or integral equations.
An accurate solution the eigenvalue problem enables major equation
resolution, as well as the wave function of a quantum system acquisition [12].
A non-zero defined Hermitian operator denoted by Neumann as "maximal
operator", and the eigenvalue well-posed maximal operator called "hyper
maximal operator".

Hermitian operators, which are not hyper maximal, stay beyond the
Neumann theory of quantum mechanics. The matter of this "exception" may
be understood from Godel's theorem on the incompleteness of any formal
system [13]. Though the complete equivalence of Hilbert functional space and
finite-dimensional vector space not finally proved, the operators in context of
Hermitian matrix transforms became principal objects in Neumann's quantum
mechanics.

A general insight on mathematical models was presented by Neiman in
his "Mathematician", ([14], 1947). In this work, geometry emphasized as a
principal way of mathematical imagination and abstract thinking. Particular
discussed the cognitive relationships between the "logical rigor" and
"empirical knowledge" in mathematical theories.

A solid contribution in quantum mechanics made by Feynman's lectures
on physics [15]. The eighth chapter of this book highlights the Hamiltonian
matrix in the context of particle quantum states presentation. The Chapter 20
outlines the operator calculus as the next step in quantum mechanics
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understanding. The key issues in modern quantum mechanics related to
measuring system and gauge fields [16 — 18]. The ubiquitous penetration of
quantum physics inspired researches on general theory of the open quantum
systems [19]. These works correlate with relativistic probability concept [20],
[21]. As noted in [22], the quantum mechanics motivates searching for a new
"quantum mathematics”.

In recent years, the modern mathematics apparently migrates towards
artificial and computer intelligence as a powerful driver of prospective
technological solutions. In this context, the math language itself gradually
evolves to high-level programming language for cognitive automata. Though,
a lot of work is still ahead and more researches needed in this realm.

Objective. This paper aims constructing a unified geometric
presentation of a quantum system experiment.

The quantum system hierarchy. Consider the "many-body problem"
on the basis of quantum mechanics principles. Suppose a cognitive subject
monitoring the object particles interaction (denote "quantum system S
experiment”, or QSE). Let experiment QSE contains a series of cyclic tracks,
each formed by a sequence of system state samples (SSS). Each sample
includes records of one or more particles of the object. An ordered set of objet
particles denote "ensemble". Thus, we obtain the following three-level
hierarchy of the QSE-terms:

— Particle &, : an element of the 1-st rank set;

— Ensemble {&,} (of particles): the 1-st rank set;

— Sample (of particles) x  {§,,} : the 1-st rank instant subset;
—Track f(¢)={x,}: the 2-nd rank sequence of samples;

— Experiment: the 3-rd rank collection of tracks;
— Universe U = {u(?)} : the 3-rd rank collection of potential tracks.

We adopt the following axioms of quantum system experiment (QSE).
1) Separability. Any particle appears solo once at least.

2) Duality. Any particle has an antiparticle dual to itself.

3) Ergodicity. Each track of QSE observed under the same conditions.
4) Cyclicity. Each track starts and ends with the same state.

Let f (t)eU — the mathematical expectation of a track; {f(t)} elU —

the set of centered tracks. Consider f(t) a Markov chain; P(k,/)— transition

matrix for QSE (entanglement).
Consider symmetric real Hermitian matrix P(k,/). Each row of

P(k,l)presents the complete set of conditional probabilities for QSE-states
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transition. Therefore, the sum of all the elements in any row of P(k,/) matrix

yields unit.
Introduce axiom 5. The QSE states Separability.
Each diagonal element of P(k,l)i s greater than zero. It means that any

QSE-state appears solo once at least. Thus, any non-diagonal element of
P(k,l) is less than unit. Map P(k,/) onto Hermitian matrix H(k,/) by
replacing the diagonal of P(k,l) with units; apparently this transformation is a
bejective mapping: P(k,l) <> H(k,l).

Presentation Hermitian matrix in eigenvalue spectrum. The quantum
system experiment (QSE) itself is an empirical data array beyond any
formalized coordinate system of a physical realm. Constructing an abstract
math space, which is relevant to given QSE, is the essence of a particular
quantum model.

Take a well-posed Hermitian matrix H(k,/), which admits an accurate

eigenvalue task solution with real non-zero spectrum of eigenvalues {A,} and
unitary real matrix Z of eigenvectors. Let A =diag({\,}) the diagonal

matrix of eigenvalues. For these notations, the eigenvalue task is known
equation:

H-Z"=7"-A, (1)

where Z~ is the conjugate matrix towards Z. Let [ the diagonal unitary
matrix. The following relation is valid for any unitary matrix Z :

7-7°=7"-7Z=1I )
Evolve the (2) equation as follows:
Z:(H-ZYZ=(Z" "N H-(Z -2)=(Z" N> H-I=(Z"-A).

This yields the known equation presenting a well-posed Hermitian
matrix H in the basis of eigenvectors Z :

H=Z7"-A-Z. (3)
The presentation (3) possesses the property

tr(H):tr(A):gkk:K, 4)
k=1

where #r( )is matrix treasure (the sum of diagonal elements).
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Geometric presentation of the quantum system experiment. The core
idea of geometric presentation the matrix of quantum states transitions
P(k,l) <> H(k,l) is the fact that any well-posed Hermitian matrix H
corresponds to particular set of vectors V = {V,} in Euclidian space.

Apply the aforesaid number 4 axiom of quantum experiment Cyclicity to
introduce the notion of topological time circle ©®,, and the so called
"topological time" ¢ e <®T =[0,1,2,...T = O]> as a closed chain of time dots.
To each point ¢ assign an ordered sample x, = {£,} of the quantum system

state, which is an integer signed number s formed by N ternary digits (any
digit refers to particular quantum particle &, € {€,}). In case N =8, numbers

€. =—11111111 and &

elements of the set &, € {§, } . Next, one axiom more needed to accomplish the

max = 11111111 present the minimal and maximal

topological space of QSE.

Axiom 6. Completeness of the QSE set of states.

A singular state QQ of quantum system exists between the minimal and
maximal states: —111...1<Q < +111...1.

Include the Q number into the set {x}, xc {§,}: {x} > ({s},Q> =X.

Present the set X as topological circle ®, of QSE states. Thus, the state
space of a quantum system takes the form of a two-dimensional torus
02 =0, x0O,. Each track f(¢)={x,} refers to a loop set on ©?. The math

expected track f (¢) = mean(f(¢)) is a loop on ®*. The torus @ =© X0,

denote "the phase space of quantum system states" (PSS). The track f‘ GECE
denote "the wave function of QSE". Let each point of f‘ (1) € ® possess a
matrix H,(k,l) originated from P (k). The form < f() e H, (k,l)>
denote "the QSE functional space (QFS)", where H,(k,/) is Riemann metric

tensor of second rank.
If Markov quantum system, the tensor /, does not depend on the time

t. To calibrate the QFS space, construct the first-rank matrix operator V
based on matrix H,. Define the matrix of the so called amplitude eigenvalues

spectrum Y = ++/A . Evolve the equation (3) to
H=7 -(Y-Y)-Z=(Z-Y)-(Y-2). (5)

Insert the neutral math form Z - Z" = I into (5):
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Z"Y)(Y-2)=(Z"-Y)I-(Y-Z)=
=(Z"-V)(Z-Z)H-(Y-2Z)=
=(Z"-Y-2)(Z"-Y-2).
Denote V :=(Z" -Y-Z). Apparently,
Vi=(Z"Y-2)=2Z) Y- (Z)=2"Y-Z=V,
i.e. matrix ¥ turns Hermitian one. Hence, H = Vz, or
v=JH=Z"-Y-Z. (6)

The Hermitian matrix V' is the first-rank tensor with respect to H ; it is
covariant on vector set V = {Vk} . Assume the matrix V' is a two-dimensional

array of normal projections for vectors V:{I;k}, being presented in the
orthonormal basis of an Euclidean space (considering H 1is the scalar product
of V:{V xV}=H). Thus, matrix H admits geometric interpretation as a set

of vectors (6) acquired from the experiment. However, the set of vectors V' in
(6) is not unique, but a plenty of different vector sets are invariant to any given
Hermitian matrix H of vector scalar products. Therefore, equation (6) exhibits
a unified quantum uncertainty principle.

Ultimately, a unified experiment on quantum system (QSE) is mapped

on two-dimensional topological torus ®* =@, x®,, which is built in terms
of "quantum state multiplied by quantum time", and intends to exhibit the
complete set of potential QSE-states. This torus ®* =@, x®, is understood
as QSE phase state space (denoted above PSS). Next, a phase-loop track
f (1) = mean(f(¢)) defined on the torus ®* =0 ¥ X0y, to exhibit the math
expected QSE-track (called QSE wave function). Finally, tensor function
V( ft) determined on the points of math expected track f (2), that exhibits the

QSE particle entanglement in the form of vector set {17 X 17} ,=H,.

The Hermitian matrix V'( ft) is understood as the kernel of a first-rank

tensor operator for quantum system states transformation (the so called
operator equation of physical process observation): x-V =x,. Its geometric

form is the vector basis of a local Euclidian space determined on the set of
track points f (). The evaluation of unknown state x turns to the known
inverse task of Math physics: x;, =x-V ', where the kernel V' often ill-posed
matrix assumed for renormalization procedure.
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Conclusion. The theoretical methods of large system investigation
evolve behind empirical researches. Beginning the 20th century a cascade of
bizarre empirical facts emerged in experimental physics, resulted in modern
quantum mechanics foundation. In recent years, the quantum physics
penetrates ubiquitously, though, academia mathematical disciplines often keep
inertia.

In this paper, the quantum principles applied to particle interaction
analysis in an arbitrary many-body task. A unified geometric model designed
for a quantum system experiment, based on the axiomatic approach. The
topological space defined for quantum system phase states in the form of two-
dimensional torus. The looped tracks on the torus simulate the system state
behavior in cyclic time, as well as the wave function of quantum system
determined and tensor form of particle entanglement obtained.

The results of this work oriented for a wide class of large object studies,
wherein a set of interacting elements observed (telecommunication and
information networks, transporting and queuing systems, etc.)
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VY3arajbHeHe  TreoMeTpHYHE  NpeICTABJEHHS  KBAHTOBOIO  CHCTEMHOIO
exciepumenTy / TixonoB B.I. // Bicauk HTY "XIII". Cepis: InpopmaTruka Ta MOAEITIOBAHHS.
—2018. — Ne. 24 (1300). — P. 59 — 68.

Mertoau KBaHTOBOI (Pi3MKM CHOTOJHI NPOHHUKAIOTH Yy PI3HI Taly3l TEOPETHYHHX
JUCIUILTIH. B po6oTi, 3acHOBaHOi Ha NPUHLMIIAX KBAHTOBOI MEXaHIKU, BBEJICHO PIBHOMIpPHY
reOMETPUYHY MOJEb €KCIEPUMEHTY KBaHTOBOI cucteMu. Pa30BHid IPOCTIp BU3HAYAETHCS
JUISL €KCIICPUMEHTY KBaHTOBOI CHCTEMH Yy BUIVIAII JBOBHUMIPHOIO TOIOJOTiYHOro TOpy. Ha
IbOMY TOpi, MaTeMaTHYHE OYiKyBaHHS KBAaHTOBOI CHCTEMH CIIii BU3HAUAEThCS SIK XBUJILOBA
(yHKIIS TOpsA 3 TEeH30POM KBAaHTOBHUX CTaHIB 3aBaJICHHs. TEeH30p KBaHTOBOTO 3allIyTYBaHHS
TPAKTY€EThCS SK BEKTOpHA OCHOBA JIOKALHOTO €BKIIIIOBOTO MpocTopy. PoboTa mepenbadae
KOMIUIEKCHE 3aCTOCYyBaHHS 0aratbox cucteM. bibmiorp.: 22 Ha3B.

Koaro4doBi c1oBa: reoMeTpiyHa MO, KBAaHTOBA cucTeMa; (ha30BHil IIPOCTIp; TEH30D
CTaHy.

YAK 530.145.1

O0o01IeHHOEe TreoMeTpUYeCKOe TMpeacTaBjeHHe KBAHTOBOIO  CHCTEMHOIO
skcnepumenta / TuxonmoB B.M. // Becrmuxk HTY "XIIN". Cepus: Hudopmartnka n
monenupoBanue. — 2018. — Ne. 24 (1300). — P. 59 —68.

MeTonpl KBaHTOBOM (MBHKM CETOAHS TNPOHHUKAIOT B  pa3MYHbIE  00JIaCTH
TEOPETUYECKUX JUCHUIUIMH. B 3TOi cTaThe, OCHOBAaHHONW Ha MPUHLMINAX KBAHTOBOM
MEXaHUKH, BBEJCHAa OJHOPOJHAS TEOMETpPHYECKass MOJENb OJKCIEPUMEHTa KBaHTOBOW
cucremsl. ®Da3oBoe TPOCTPAHCTBO, OIpeNeNeHHOE s KBAaHTOBOI'O  CHCTEMHOTO
SKCIIEPUMEHTa B BHIE JBYMEPHOTO TOMOJOTHYECKOro Topa. Ha 3ToM Tope maTeMaTHdyecKoe
OXKU/TaHUE KBAaHTOBOHM TPAEKTOPUHU CHCTEMEI, ONpeaesieMoe KaKk BOJTHOBAS (YHKITUS, HAPALY
C TEH30pOM CLEIUICHHA KBAHTOBBIX COCTOsHUIl. TeH30p KBaHTOBON 3alyTaHHOCTU
MHTEPIPETHPYETCS] KaK BEKTOPHBIH 0a3KC JIOKAIGHOTO €BKIMAOBA IPOCTPAHCTBA. JTa paboTa
HpeAIoaraeT KOMIJIEKCHBIE TPUIIOKEHHMS TSI MHOTUX cHcTeM. bubmuorp.: 22 Hass.

KaoueBble cioBa: reomMerpuyeckas MoOJeNb; KBaHTOBas cucrema; (ha3oBoe
IPOCTPAHCTBO; TEH30P COCTOSIHHUS.
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The methods of quantum physics penetrate today into various fields of theoretical
disciplines. In this paper, based on quantum mechanics principles, a uniform geometric model
of a quantum system experiment introduced. A phase space determined for quantum system
experiment in the form of two-dimensional topological torus. On this torus, the math
expectation of quantum system track defined as the wave function, along with the tensor of
quantum states entanglement. The tensor of quantum entanglement interpreted as the vector
basis of a local Euclidian space. The work intends the complex many-body system
applications. Refs.: 22 titles.
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