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УДК 539.3 
 

A. ZOLOCHEVSKY, Dr. Sc., G. GONCHAROVA, NTU “KhPI”  
 

SODIUM PENETRATION AND CHEMICALLY INDUCED STRESSES 
IN THE HOLLOW CYLINDER OF RAPOPORT-SAMOILENKO AP-
PARATUS - I. CONSTITUTIVE MODELING  

 
Теоретичні дослідження даної роботи пов’язані з урахуванням впливу явища хімічного переносу 
натрію та хімічного розширення в катодному матеріалі при алюмінієвому електролізі в розрахун-
ках залежних від часу розподілень хімічно наведених напружень в циліндрі з отвором для апарата 
Рапопорта-Самойленка. Виконано моделювання хімічних і механічних явищ, та одержані 
формули розподілу напружень в циліндрі апарата.  

 
In this paper, a comprehensive theoretical investigation has been carried out with the main focus directed at 
the understanding on how sodium penetration and chemical expansion in the cathode material during alumi-
num electrolysis affect the time dependent and chemically induced stress distribution in the hollow cylinder of 
the Rapoport-Samoilenko apparatus. Constitutive modeling of chemical and mechanical phenomena has been 
given, and the formulae of stress distribution in the cylinder of the apparatus have been obtained. 

 

1. State of the art. During aluminum electrolysis, the liquid aluminum reacts 
with the electrolyte, and metallic sodium migrates into the carbon structure. Absorbed 
sodium in the carbon structure leads to carbon swelling and possibly high level of 
diffusion induced stresses. M.B. Rapoport and V.N. Samoilenko introduced [1] a 
simple method for measuring of sodium expansion in laboratory carbon cathodes due 
to sodium penetration, and different modifications of the Rapoport-Samoilenko appa-
ratus were proposed [2]. A constitutive model for cathode carbon materials which is 
able to reproduce the relationship between the sodium expansion and time in a solid 
cylinder during the Rapoport-Samoilenko-type test as well as to estimate diffusion 
induced stresses in a solid cylinder during aluminum electrolysis on laboratory cath-
ode samples was proposed in [3, 4]. However, up to the authors’ best knowledge, in 
the literature there does not exist such a model for hollow cylinder of the Rapoport-
Samoilenko apparatus. The aim of this paper is to provide such a predictive tool. 

2. Mathematical model of the radial diffusion in the cylinder. A long circu-
lar cylinder in which sodium penetration is everywhere radial will be considered. 
The concentration C of sodium in the cylinder is only a function of radius r and 
time t and follows Fick’s second law [5] 
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where D is the diffusion coefficient of sodium.  
1.1. Hollow cylinder. If then in the hollow cylinder a ≤  r ≤  b the boundary 

and initial conditions are: 
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and 
( ) ,0,,,0 =∈= tbarC    (3) 

 

then the solution of Eq. (1), as shown in [6], is 
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Here ( )xJ0  and ( )yJ1  are the Bessel function of the first kind of order zero and the 
Bessel function of the first kind of the first order, respectively, ( )xY0  and ( )yY1  are 
the Bessel function of the second kind of order zero and the Bessel function of the 
second kind of the first order, respectively, and ( )∞=α ,...,2,1nn  are the positive 
roots of 
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Let 0C  be the concentration of sodium in the cathode carbon material after 
saturation. Next, the two particular cases of the general boundary conditions given 
by Eq. (2) will be considered. 

a) Flux zero on r = a and surface concentration constant on r = b, initial con-
centration distribution zero. The boundary and initial conditions  
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follow from Eqs. (2) and (3) if it will be assumed: 
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Then the solution of Eq. (1) is follows from Eq. (4) as: 
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where ( )∞=α ,...,2,1nn  are roots of 
 

( ) ( ) ( ) ( ) 00101 =αα−αα nnnn bYaJbJaY .  (10) 
 

b) Flux zero on r = a and sodium surface exchange on r = b, initial concentra-
tion distribution zero. The boundary and initial conditions  

 

( ) 0,,,0

,0,,0

,0,,)( 0

=∈=

≥==
∂
∂

≥=−β=
∂
∂

−

tbarC

tar
r
C

tbrCC
r
CD

       (11) 

 

follow from Eqs. (2) and (3) if it will be assumed: 
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Here β  is the surface exchange coefficient. Then the solution of Eq. (1) is follows 
from Eq. (4) as: 
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where ( )∞=α ,...,2,1nn  are roots of 
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1.2. Solid cylinder. In formal way, two particular cases for solid cylinder with 
a = 0 resulting from the previous part 1.1 of the paper will be considered.  

a) Flux zero on r = 0 and surface concentration constant on r = b, initial con-
centration distribution zero. The boundary and initial conditions 

 

( ) 0,,0,0

,0,0,0

,0,,0

=∈=

≥==
∂
∂

≥==

tbrC

tr
r
C

tbrCC

         (15) 

 

follow from Eq. (7) if it will be assumed a = 0.  Then the solution of Eq. (1) is fol-
lows from Eq. (9) as: 
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where ( )∞=α ,...,2,1nn  are positive roots of 
 

( ) 00 =αnbJ .    (17) 
 

Note that Eq. (16) was used earlier in [3] and was obtained under assumption 
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r
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b) Flux zero on r = 0 and sodium surface exchange on r = b, initial concentra-
tion distribution zero. The boundary and initial conditions  
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follow from Eq. (11) if it will be assumed a = 0.  Then the solution of Eq. (1) is 
follows from Eq. (13) as: 
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where DbL /β=  and ( )∞=α ,...,2,1nn  are positive roots of 
 

( ) ( ) 001 =α−αβ nn JLJ .           (20) 
 

Note that Eq. (19) was used earlier in [7] and was obtained under assumption 
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0,0, ≥=− trfiniteC  instead of 0,0,0 ≥==
∂
∂ tr

r
C  accepted here. 

3. Constitutive modeling. The sodium expansion in a long hollow cathode 
carbon cylinder with the inner a and outer b radii, respectively, is considered. So-
dium penetrates from the outer surface of the carbon cylinder into the medium. The 
initial state of the cylinder, i.e. before sodium penetration into carbon, is unstressed. 
Let F be an axial compressive force applied to the ends of the carbon cylinder. The 
deformation of the cylinder in the coordinate system ( )zr ,,θ  under plane strain 
conditions and symmetry about the axis z is considered. Here r is the radial coordi-
nate, θ  corresponds to the circumferential direction, and z is the axial coordinate. 
The sodium concentration C in the cylinder can be assumed symmetrical about the 
axis z and independent of the axial coordinate. There are three nonzero components 
of stress zr σσσ θ ,, , and three nonzero components of strain zr εεε θ ,, . All three 
shear stresses and strains are zero on account of the symmetry of deformation and 
the uniformity in the axial direction of cylinder.  

Let the components of strain be a sum of the components of elastic strain and 
the components of the chemically induced strain, i.e.,  
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The cathode material of the cylinder can be considered as an isotropic mate-
rial, and the components of elastic strain can be defined according to the general-
ized Hooke’s law: 
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where E is a  modulus of elasticity, and ν  is Poisson’s ratio. Neglecting the creep 
deformation of the cathode carbon material, we can assume [3] that 
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where A is a material constant. Using Eqs. (21)-(23):  
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In Eq. (24) stresses, strains and sodium concentration in the cathode carbon cylinder 
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are only functions of the radial coordinate and time. From the third formula of Eq. 
(24) it follows: 

( ) ( )zrz ACE ε−−σ+σν=σ θ  ,   (25) 
 

and the first two of Eq. (24) give  
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where for simplicity: 
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The stresses satisfy the equation of equilibrium [8] 
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The kinematic equations have a structure [8]: 
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where u is the radial displacement , and w is the axial displacement.  
Substituting stresses given by Eq. (26) in Eq. (28):  

 

( ) ( ) ( ) ( ) 





 ε

−ν+=ε−εν−+εν+ε θθ A
C

r
rA

r
r z

rr d
d11

d
d

1111 .  (30) 

 

Substituting values of rε  and θε  from Eq. (29) in Eq. (30): 
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Integration of this equation yields  
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The constants 1C  and 2C  in Eq. (32) can be determined using the boundary conditions. 

The stresses rσ  and θσ  can be derived by using expression (32) in the first two 
expressions of Eq. (29) and substituting the resulting expressions in Eq. (26). Therefore,  
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Substituting Eq. (33) in Eq. (25), the expression for the stress zσ  is obtained as 
follows: 
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Using the boundary condition that the inner and outer surfaces r = a and r = b  are 
free from stress, so that 0,,0 ≥==σ tarr  and 0,,0 ≥==σ tbrr , it is possible 
to find that 
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Thus, stresses for the problem under consideration are given by Eqs. (33)-(35). 
Normal compressive force on the ends of the cathode carbon cylinder can be 

defined as 
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Substituting the expression for the axial stress zσ  given by Eqs. (34) and (35) in Eq.(36): 
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Then the axial strain is assumed to be function of time but it does not depend on the 
radial coordinate. Thus, the following formula is obtained from Eq. (37) 
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Introducing the pressure p on the ends of cylinder as 
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Thus, the axial strain given by Eq. (40) consists of two terms, i.e., 
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The first term  
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which is proportional to the pressure on the ends of cylinder, describes the elastic 
deformation of cathode material in the axial direction of cylinder. The second term 
is defined as 

rrC
ab

A b

a
s d2 22 ∫−

=ε .         (43) 

 

Here sε  is the sodium expansion which is measured during the Rapoport-
Samoilenko-type test. 

Using now Eqs. (35), (37), (39), (41) and (42), Eqs. (33) and (34) can be re-
written for stresses as follows 
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Next, different final results for the sodium expansion and stresses related to 
the different expressions for the concentration C given by different boundary condi-
tions of the sodium penetration will be considered. 

3.1. Hollow cylinder. Two particular cases related to the different expressions 
for the concentration C given by Eqs. (9) and (13) will be considered.  

a) Boundary and initial conditions given by Eq. (7). In the case under discus-
sion with the constant sodium concentration on r = b the concentration of sodium is 
defined by Eq. (9). Substituting the expression for the concentration C given by in 
Eq. (9) in Eq. (43) and integrating: 
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Then substituting the expression for the concentration C given by Eq. (9) in 
Eq. (44) and integrating, the final expressions for stresses are obtained as follows: 

 

(44) 
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b) Boundary and initial conditions given by Eq. (11). In the case under consid-
eration with the sodium exchange on r = b the concentration of sodium is defined 
by Eq. (13). Substituting the expression for the concentration C given by in Eq. (13) 
in Eq. (43) and integrating, the final expression for the sodium expansion is ob-
tained as follows: 
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Then substituting the expression for the concentration C given by Eq. (13) in 
Eq. (44) and integrating, the final expressions for stresses in the hollow cylinder   
are obtained as follows: 
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3.2. Solid cylinder. Two particular cases related to the different expressions for 
the concentration C given by Eqs. (16) and (19) will be considered.  

a) Boundary and initial conditions given by Eq. (15). In the case under discus-
sion with the constant sodium concentration on r = b the concentration of sodium is 
defined by Eq. (16). Substituting the expression for the concentration C given by 
Eq. (16) in Eq. (43), putting a=0 and integrating: 
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Then substituting the expression for the concentration C given by Eq. (16) in 
Eq. (44), putting a=0 and integrating, the final expressions for stresses are obtained 
as follows: 
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Note that Eqs. (51) and (52) were obtained earlier in [3]. 
b) Boundary and initial conditions given by Eq. (18). In the case under consid-

eration with the sodium exchange on r = b the concentration of sodium is defined 
by Eq. (19). Substituting the expression for the concentration C given by Eq. (19) in 
Eq. (43), putting a=0 and integrating, the final expression for the sodium expansion 
is obtained as follows: 
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Note that Eq. (53) was obtained earlier in [7]. 
Then substituting the expression for the concentration C given by Eq. (19) in 

Eq. (44), putting a=0 and integrating, the final expressions for stresses in the solid 
cylinder under consideration   are obtained as follows: 
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4. Conclusion. A predictive tool which is able to reproduce the chemically in-
duced stresses in a hollow cathode cylinder of the Rapoport-Samoilenko apparatus 
has been proposed. Analytical formulae for the calculations of the chemically in-
duced stresses in hollow cylinders as well as in solid cylinders during aluminum 
electrolysis on laboratory cathode samples have been obtained. The next communi-
cation will be related to the discussion of the numerical results. 
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