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GENERALIZED FOURIER TRANSFORMS BASED ON 
QUANTUM UNCERTAINTY PRINCIPLE 
In this paper, basic forms of Fourier analysis considered − harmonic series, integrals 

and discrete transforms with respect to engineering approach. Quantum uncertainty relation 
introduced for bound time-frequency metrics in harmonic function presentation. Generalized 
Fourier transforms determined on the basis of unified summation-integration operator. This 
extends the scope of harmonic analysis application. Figs.: 2. Refs.: 11 titles. 
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transforms; harmonic analysis application. 

The problem statement. Many outstanding achievements were obtained 
on the basis of spectral analysis methods, named after the great French 
mathematician of the 19th century J. Fourier (1768 – 1830). In the modern 
coding theory, data transmission and processing, Fourier analysis is one of the 
most important mathematical tools, which is based on classical theory of 
Fourier series and integrals. The classical Fourier series describes a periodic 
function as a superposition of discrete harmonic functions with a finite or 
infinite set of frequencies. A lot of physical phenomena can be simulated by 
periodic processes that adequately modeled by Fourier series. To study non-
periodic functions, Fourier proposed continuous integral transforms. Modern 
tasks of harmonic analysis widely use discrete spectral transforms. It should be 
noted, that the classical Fourier analysis operates with idealized models of 
physical processes, and no method known to clearly divide physical 
phenomena into classes, which explicitly relevant to harmonic series, integrals 
or discrete frameworks. This makes difficult comprehensive understanding 
and practical use of Fourier analysis methods. Therefore, an actual problem 
rises on further unification of various harmonic analysis forms with particular 
focus on engineering applications. 

 

Related publications survey. Trigonometric series were used in 
periodic function analysis before Fourier researches by mathematics 
d'Alembert, Euler, Bernoulli and Gauss, [1]. In 1755 L. Euler in his 
"Differential Calculus" wrote a chapter "On the representation of functions by 
series", [2]. In 1805 K. Gauss, in his unpublished work, presented the method 
of interpolation of orbital measurements, which can be considered a prototype 
of modern discrete trigonometric transforms, [3]. In 1807, J. Fourier reported 
at the Paris Academy his results on the propagation of heat in a solid body, 
where he firstly described arbitrary functions with the help of trigonometric 
series. This work was criticized by many famous scientists of that time; in 
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1812, J. Fourier received the Academy award, and in 1817 he became a 
member of the Paris Academy. But only 15 years later, after the death of the 
academy secretary, J. Fourier published his well-known paper "Analytical 
theory of heat" (1822), where new method proposed of integral transforms to 
describe heat transfer processes [4]. The Fourier theory of heat propagation 
had not been recognized for a long time; later on, this approach, referred to as 
harmonic Fourier analysis, got various applications (Fourier series and 
integrals, discrete transforms, fast discrete transforms) [5]; this theory was 
completed after J. Fourier, when D. Hilbert became an authoritative 
mathematician of that time (1862-1943). The direct integral Fourier transform 
maps a given continuous time function whose modulus is integrated on an 
infinite real time axis, to its spectral image as a function of the continuous 
frequency, also defined on the infinite real axis, [6]. Integral transforms and 
Fourier series are effectively used in various fields of physics and geometry, 
optics, number theory, combinatory, signal processing, probability theory, etc. 
In fact, in the Fourier series, the periodicity of the process is required, and the 
Fourier integral considers functions integrated on an infinite time axis, or in an 
infinite range of continuous frequencies. For these reasons, modern 
applications of spectral analysis widely apply discrete Fourier transforms 
(DFT), as well as special algorithmic methods to accelerate the DFT 
processing, aka fast Fourier transform (FFT), [7].  

An increase in the speed of Fourier transforms is an important problem 
for many technical applications. In this direction, many works contributed. 
The origins of the DFT and FFT go back to the aforementioned work of Gauss 
(1805); however, the widely known today algorithm of the FFT was developed 
after 160 years by IBM engineers (1965), [8]. The terms FFT and DFT are 
similar in that the FFT is a special algorithm for calculating the DFT, which 
differs from the direct calculation of the DFT by its determining formulas. 

In recent years, works have appeared in the literature in which attempts 
have been made to construct generalized Fourier transforms, [9 – 11]. In [9] a 
formula found that relates the Fourier transform of a radial function on Rn with 
the Fourier transform of the same function defined on Rn+2. In [10] a survey in 
a nutshell given on diverse known forms of Fourier analysis, including the so 
called short-time Fourier transforms firstly introduced by D. Gabor (1946). In 
[11] a generalized Fourier transform presented with the use of is the 
cylindrical Bessel function. We note that in known forms of Fourier analysis, 
the time and frequency domains commonly are not bound. 

Objective. In this paper, we intend to construct generalized Fourier 
transforms with bound time and frequency domains that include harmonic 
series, integrals, and discrete Fourier transforms as special cases. 
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Methodology aspects of Fourier analysis. In math literature for 
engineers, the classic Fourier analysis is usually represented by two main 
sections: "Fourier series" and "Fourier integrals"; an extra item is discrete 
Fourier transform as a section of numerical methods for solving a wide class 
of applied problems, [5]. Consider some methodological aspects of Fourier 
series, integrals and discrete Fourier transforms with respect to engineering 
applications. 

Fourier series. The Fourier series calculus represents a periodic real 
function )(tf of a real argument t with a repetition periodT  that satisfies the 
Dirichlet conditions, as the sum of a trigonometric series. According to the 
Dirichlet conditions, the )(tf  function must be single-valued, piecewise-
continuous and piecewise-monotone (that is, to have a finite number of 
discontinuities and extrema), and be absolutely integrable (have a finite 
integral value ∫

T
T dttf

0
|)(| , [5 − 7]. The direct mapping 

},,{)( 0 nn baatf → of the function )(tf  into the set of coefficients of the 
Fourier series },,{ 0 nn baa , ...,2,1=n , has the form: 
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The inverse mapping on )(},,{ 0 tfbaa nn →  means presentation the 
function )(tf as Fourier series sum 
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If function )(tf  has a finite set of Fourier series terms, than inverse 
mapping )(},,{ 0 tfbaa nn →  in (2) is exhaustive (with some inaccuracy of 
trigonometric functions calculation). In case of infinite set of Fourier series 
terms, one can only approximate )(tf  by partial sum of trigonometric series. 
The Fourier series presentation (1) and (2) evolve to more compact complex 
view in normalized interval π⋅= 2T : 

 ∫
π⋅ ⋅⋅− ±±=⋅

π
=

2
0

,...,2,1,0,)(
2
1 ndtetfc tni

n  (3) 



 
 
 
 
Вісник Національного технічного університету "ХПІ", 2017, № 21 (1243)  

 

 106 

 ∑
+∞

−∞=

⋅⋅ π∈⋅→
n

tni
n tectf ].2,0[,)(  (4) 

The complex coefficients nc  are related to real numbers 0a , na , nb : 
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Integral Fourier transforms. The direct integral Fourier transform is 
applied to a function )(tf  defined on an infinite axis of the independent 
argument ),( +∞−∞∈t ; as a rule but not necessary, the time axis supposed. 
The complex Fourier integral is defined with respect to absolutely integrable 
real or complex function )(tf , i.e. such one, that the integral 

∫
+∞

∞−
dttf |)(| exists and is finite [5 − 7]. 

Direct and inverse integral Fourier transforms are often written in 
symmetrical form: 
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Understanding Fourier series and integrals relationships. We will 
compare the relevance of Fourier series and integrals (1-6) with respect to 
engineering tasks. An actual issue is consideration about Fourier integral 
transforms as generalized Fourier series. In other words, are Fourier series a 
particular case of Fourier integrals? Formally, a periodic function that satisfies 
the Dirichlet conditions is not absolutely integrable in an infinite time interval. 

For instance, function 
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ntif
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tf  is obviously 

representable by Fourier series; instead, the integral ∞=∫
+∞

∞−
dttf |)(|  does 

not exist as a finite number. In fact, the requirement of )(tf periodicity for 
adequate representation by Fourier series can be mitigated, if determined )(tf  
on a bound normalized interval ]2,0[ π∈t , where )()2( tftf =π+ ; herewith, 
Fourier series calculation remains unchanged, but function )(tf  itself turns 
into absolutely integrable and presentable by Fourier integral [7].  
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It can be shown that the spectrum of such a function will also be 
discrete, and the inverse integral transformation will become a sum very 
similar to the sum of the Fourier series. But still, with this approach, the 
coefficients nc of the Fourier series in (3) do not coincide with the amplitudes 

)(ωf  of the discrete harmonics in (6). This is because of different 
normalizations in Fourier integral and Fourier series coefficients calculus. 

We will represent the direct and inverse transforms of (3) and (4) in 
symmetric form: 
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Compare (6) and (7) to get the following. If frequency ω  in (6) takes 
solely integer values ...,2,1,0 ±±==ω nn , then transforms (7) may consider 
a special case of integral transforms (6). However, in general, this does not 
happen. For complete embracing Fourier series by Fourier integral forms, an 
essential detail needed more, this is a unified way of scaling time t  and 
frequency ω . This aspect discussed onwards in the context of the time-to-
frequency quantum uncertainty principle. 

Discrete Fourier Transforms. In applications, the discrete form of 
Fourier transforms (DFT) widely used, as well as special algorithms for 
accelerated computation of the DFT − the so-called Fast Fourier transforms 
(FFT), [7 − 8]. The symmetric form of direct/inverse discrete DFT is: 
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where )(nx , )(kx are ordered sets of N real or complex numbers. These sets of 
numbers can be regarded as the coordinates of vectors in some complex space; 
so, for simplicity, we will designate both )(nx and )(kx as vectors x  and x , if 
no ambiguity seemed. The discrete Fourier transforms can also be written in 
terms of matrix or tensor operations for convenient program coding. 

Let complex kernels of sum operators (8) be complex conjugate unitary 
matrices F and *F  with the property IFFFF =⋅=⋅ ** , where I  is the 
diagonal unit matrix: 
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With notation introduced above, the DFT pair becomes: 
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Substitute x)  from the first into the second transform (10), we obtain 

 .)()( ** xIxFFxFFxFxx =⋅=⋅⋅=⋅⋅=⋅=  (11) 

The unitarity of discrete Fourier transform matrix. The unitarity of 
the discrete Fourier transform matrix is the key feature to validate the one-to-
one mapping property of )()( *FxxFxx ⋅=↔⋅= . Unlike rather abstract 
reasoning for convergence Fourier series sum and inverse integral Fourier 
transform [6, 7], the unitarity of the discrete transformation matrix is simply 
derived by elementary geometric progression and primitive complex unity root 
[9]. 

Let a geometric progression given as a numerical sequence }{ ka with a 
real or complex denominator 1≠q : 

 ....,2,1,0},{,...,,}{ 0
2
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k  (12) 

The partial sum of a segment of this sequence is calculated by the 
following formula, [5]: 
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In particular, the initial sum of the progression terms from 0 to N is 
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Let consider a special case of a geometric progression − the so-called 
cyclic progression, in which the initial and final elements of a periodic 
segment match, i.e. KL aa = , KL < . In this case, the sum of the cyclic 
segment terms is simplified 
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In particular, if 10 == Kaa , then (15) evolves to ∑
=
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k
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0
1}{ . This will 

be used in consideration the primitive complex unity root C1  defined as [9]: 

 .1:),2exp(:1 −=π⋅⋅= iiC  (16) 

The following property of the primitive root C1 holds: if some number µ  
is an integer, then the expression µ)1( C equals 1; if µ  not integer, then 

1)1( ≠µ
C : integer 
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It is not hard to find property (17) using the well-known Euler formula 
ϕ⋅+ϕ=ϕ⋅ sincos)exp( ii , taking into account that 12cos =π , and 

02sin =π . Now, consider the following sequence  

 ....,,2,1,0;||},])1{[(})2{exp( NkN
N

i kNC
k =<µ=

µ⋅π⋅
⋅

µ

 (18) 

According to the primitive root C1 property (17), along with N<µ || , 

the N
Cq
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= )1(  can be denominator of the following geometric progression 
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Obviously, the initial and final terms of sequence (19) have the same 
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Since the last term of the series (19) is 1, it follows from (20) that partial 
sum of (19) omitting the last term with number N, is zero: 
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The formula (21) is the principal key to justify the unitarity of the DFT 
matrix. Consider the product of DFT (8) substituting n  by m in F matrix 
defined in (9): 
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Compare the last expression with (21), we can see that 1* =⋅ FF  for mn = , 
and 0* =⋅ FF  for mn ≠ , i.e. F , *F are unitary matrices. Hence it is also 
easy to show that IIFFFF ==⋅=⋅ **** )( . 

Generalized Fourier Transforms. It was shown above that integral 
Fourier transforms (6) look like embracing the Fourier series (3); however, the 
non-correspondence of time/frequency scaling in Fourier series (3) and 
integrals (6) hinders complete unification of these two forms of harmonic 
analysis. These issues are discussed below in more details.    

Consider relationship between Fourier series and DFT. Suppose vector 
)(nxx =  as function )(tf  quantization product, assuming that )(tf  

determined on a bounded half-open interval ),0[ Tt ∈ and satisfied the 
Dirichlet conditions (in order to be representable by Fourier series). Despite 
function )(tf  is not periodic in our case, the time interval ),0[ T can be 
interpreted as a part of an extended time interval ∞<≤ t0  [7] 

 .0...),3,0[...,),0[,),0[,),0[ 321 ∞<≤→⋅= tTTTTU  (23) 

Now, the closure of a half-open interval ),0[ T by a point Tt = together 
with its neighborhood, along with function definition in the neighborhood 
ofT under condition )()0( Tff = , allows function )(tf  in a half-open 
interval ),0[ Tt ∈  considered as one period of a periodic 
function )(tf determined on the interval ∞<≤ t0 . Function )(tf defined on a 
closed interval ],0[ T  of the real axis Rt ∈ where )()0( Tff = , we denote as 
quasi-periodic function with a half-open repetition period ),0[ Tt ∈ that is 
closed on the left and is open to the right. However, integration )(tf on entire 
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closed interval ],0[ T  in (1) is not absolutely accurate to our mind, as point 
Tt = does not belong to the period of function )(tf . This aspect seems to be 

the core issue in unification diverse forms of harmonic analysis. Fig. 1 shows 
vector )(nxx =  as quantified function )(tf  on interval ],0[ Tt ∈  partitioned 

in 8 quanta 
8
T

t =∆ . Eight discrete function samples are taken at the 

beginning of each t∆  quantum. The last point 9=n  of the interval does not 
belong to the period of function repetition and does not carry additional 
information, since )0()9( xx ≡ . To overcome the issue of the wrong extra 
point within the closed integration interval ],0[ Tt ∈  of a periodic 
function )(tf , we propose to change the commonly used open time axis 

+∞<<∞− t  for a closed loop-time, or topological time-circle C with 
normalized length π⋅2 . Herewith, two marginal points of closed linear 
interval ],0[ Tt ∈  will merge into one joint point π⋅== 20t . Next, we 
postulate the quantum uncertainty relationship (QUR) to bound frequency and 
time arguments along with known Heisenberg uncertainty principle in 
quantum physics [10] 

 .2
N

t π⋅
=ω∆⋅∆  (24) 

Define symmetric normalized form of QUR [11] 

 .2
N

t π⋅
=ω∆=∆  (25) 

 

Fig. 1. Vector of function quantization in time 
 

        
        
        
        
        
        
        
        

0 2 1 4 3 7 6 8 9 

x(n) 

t, n 
2 
1 

3 
4 

−

−
−

−

T 

F(t),  x(n) 
f(t) 

0 

8t∆  



 
 
 
 
Вісник Національного технічного університету "ХПІ", 2017, № 21 (1243)  

 

 112 

In this case, time and frequency arguments Ct ∈ω,  vary in normalized 
time-circle interval C . Here, DFTs (8) evolve to integral sums along unified 
contour C  [5, 6]:  
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Substitute )(ωx  in the second equation of (26) for its form in the first 
equation (26), changing argument t  for τ  in the second equation (26), we 
obtain the following identity: 

 ∑ ∑
∈ ∈ω
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Introduce "unified summation-integration operator" (USO) on a circle 
interval, which is scaled to the standard interval C of π⋅2  length; it is 
similar to common contour integral, so denote USO as ∫t f )( in time domain 

or ∫ω )(f in frequency domain. For example,  

 ∫ ∑
∈

→∆ ∆⋅⋅
π⋅

=
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2
1lim)( 0  (28) 

Depending on the context, we understand ∫ )(f  as integral sum or as a 

contour integral where ∞→N , 0
2

→
π⋅

=∆ ∞→ NN . Rewrite (26) 

omitting dt or ωd as default given symbols: 
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A pair of equations (29) we define as generalized Fourier transforms 
(GFT). Due to (27), it is clear that GFTs provide one-to-one mapping of the 
original function )(tx into its spectral image )(ωx : )()( ω↔τ xx for any finite 
or infinite number of intervals of partitioning the argument, starting from the 
value 2=N  (solely inaccuracy may occur in approaching trigonometric 
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functions). The GFT introduced above may have two marginal interpretations 
− discrete form (if 1>N  is finite digital number) and continuous form 
(if ∞→N , 0, →ω∆∆t ), Fig. 2. In discrete interpretation form, the GPF (29) 
is equivalent to DFT with special scaling in (8). In continuum interpretation 
form, we obtain unified transforms which include Fourier series and integrals 
as particular cases among many other intermediate forms. 

Besides, depending on specific spectrum distribution 2|)(| kx , two 
extreme typical cases observed (both in the discrete and continuum forms): 

1) Prototype of Fourier series (spectrum 2|)(| kx  concentrated at points 
of a multiple frequency); when ∞→N , 0→∆t , we obtain Fourier series; 

2) Prototype of Fourier integral (spectrum 2|)(| kx  distributed fairly 
evenly); when ∞→N , 0→∆t , we obtain Fourier integral. 

 

 
Fig. 2. Interpretation diversity of generalized Fourier transforms 

 
Based on generalized Fourier transforms (GFT), it becomes rather 

conditional in separation the classes of functions representable by Fourier 
series or integrals, since many intermediate forms can be observed by GFT. 
Similarly, no sense to categorize discrete and continuum Fourier transforms, 
as in limit ∞→N , the GFT embraces both Fourier series and integrals among 
the other transitional forms. Given approach seems reasonable for practical 
applications and theoretical study by engineers. 

Conclusion. An adequate utilization of theoretical methods is a non-
trivial task in applied researches. The classic approach provides at least three 
widely known forms of signal representation by trigonometric functions 
(Fourier series, Fourier integrals and discrete Fourier transforms), as well as 
variety of application algorithms; this raises methodological issues for 
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development engineers caused by the lack of clear problem identification for 
relevant methods, as well as the absence of exact formalized relationships 
between the three forms of Fourier analysis. In this work, unification of three 
popular forms of Fourier harmonic analysis introduced based on fundamental 
physical principle of quantum uncertainty; this principle formulated as 
quantum uncertainty relation between the time and frequency arguments. 
Similar to classic Riemann integral, presented a unified summation-integration 
operator (USO) with symmetrically scaled variables of time and frequency; 
due to the USO, symmetric forms of generalized direct/inverse Fourier 
transforms constructed. These observations provide a unified method of 
harmonic Fourier analysis both in theoretical and empirical planes.   
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УДК 519.6 
Узагальнені перетворення Фур’є на основі принципу квантової 

невизначеності. / Тіхонов В.I. // Вісник НТУ "ХПІ". Серія: Інформатика та моделювання. 
– Харків: НТУ "ХПІ". – 2017. – № 21 (1243). – С. 103 – 116. 

У статті розглядається питання гармонійного аналізу функцій, в тому числі рядів 
Фур'є, інтегралів і дискретних перетворень з точки зору інженерних застосувань. 
Введено квантове співвідношення невизначеностей для пов'язаних метрик часу частоти 
у частотному представленні функції часу. Визначені узагальнені перетворення Фур'є на 
основі уніфікованого оператора сумування-інтегрування. Іл.: 2. Бібліогр.: 11 назв. 

Ключові слова: гармонійний аналіз функцій; співвідношення квантової 
невизначеності; узагальнені перетворення Фур’є. 
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Обобщенные преобразования Фурье на основе принципа квантовой 
неопределенности / Тихонов В.И. // Вестник НТУ "ХПИ". Серия: Информатика и 
моделирование. – Харьков: НТУ "ХПИ". – 2017. – № 21 (1243). – С. 103 – 116. 

В статье рассматриваются вопросы гармонического анализа функций, в том 
числе ряды Фурье, интегралы и дискретные преобразования с точки зрения инженерных 
приложений. Введено отношение квантовой неопределенности для связанных частотно-
временных метрик в частотной представлении функции времени. Определены 
обобщенные преобразования Фурье на основе унифицированного оператора 
суммирования-интегрирования. Ил.: 2. Библиогр.: 11 назв. 

Ключевые слова: гармонический анализ функций; отношение квантовой 
неопределенности; обобщенные преобразования Фурье. 

 
UDC 519.6 

Generalized Fourier transforms based on quantum uncertainty principle 
/ Tikhonov V.I. // Herald of the National Technical University "KhPI". Subject issue:  
Information Science and Modelling. – Kharkov: NTU "KhPI". – 2017. – №. 21 (1243). – P. 103 – 
116. 

In this paper, basic forms of Fourier analysis considered − harmonic series, integrals 
and discrete transforms with respect to engineering approach. Quantum uncertainty relation 
introduced for bound time-frequency metrics in harmonic function presentation. Generalized 
Fourier transforms determined on the basis of unified summation-integration operator. This 
extends the scope of harmonic analysis application. Figs.: 2. Refs.: 11 titles. 

Keywords: Fourier analysis; quantum uncertainty relation; generalized Fourier 
transforms; harmonic analysis application. 

 
 
 
 


