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GENERALIZED FOURIER TRANSFORMS BASED ON
QUANTUM UNCERTAINTY PRINCIPLE

In this paper, basic forms of Fourier analysis considered — harmonic series, integrals
and discrete transforms with respect to engineering approach. Quantum uncertainty relation
introduced for bound time-frequency metrics in harmonic function presentation. Generalized
Fourier transforms determined on the basis of unified summation-integration operator. This
extends the scope of harmonic analysis application. Figs.: 2. Refs.: 11 titles.

Keywords: Fourier analysis; quantum uncertainty relation; generalized Fourier
transforms; harmonic analysis application.

The problem statement. Many outstanding achievements were obtained
on the basis of spectral analysis methods, named after the great French
mathematician of the 19th century J. Fourier (1768 — 1830). In the modern
coding theory, data transmission and processing, Fourier analysis is one of the
most important mathematical tools, which is based on classical theory of
Fourier series and integrals. The classical Fourier series describes a periodic
function as a superposition of discrete harmonic functions with a finite or
infinite set of frequencies. A lot of physical phenomena can be simulated by
periodic processes that adequately modeled by Fourier series. To study non-
periodic functions, Fourier proposed continuous integral transforms. Modern
tasks of harmonic analysis widely use discrete spectral transforms. It should be
noted, that the classical Fourier analysis operates with idealized models of
physical processes, and no method known to clearly divide physical
phenomena into classes, which explicitly relevant to harmonic series, integrals
or discrete frameworks. This makes difficult comprehensive understanding
and practical use of Fourier analysis methods. Therefore, an actual problem
rises on further unification of various harmonic analysis forms with particular
focus on engineering applications.

Related publications survey. Trigonometric series were used in
periodic function analysis before Fourier researches by mathematics
d'Alembert, Euler, Bernoulli and Gauss, [1]. In 1755 L. Euler in his
"Differential Calculus" wrote a chapter "On the representation of functions by
series", [2]. In 1805 K. Gauss, in his unpublished work, presented the method
of interpolation of orbital measurements, which can be considered a prototype
of modern discrete trigonometric transforms, [3]. In 1807, J. Fourier reported
at the Paris Academy his results on the propagation of heat in a solid body,
where he firstly described arbitrary functions with the help of trigonometric
series. This work was criticized by many famous scientists of that time; in
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1812, J. Fourier received the Academy award, and in 1817 he became a
member of the Paris Academy. But only 15 years later, after the death of the
academy secretary, J. Fourier published his well-known paper "Analytical
theory of heat" (1822), where new method proposed of integral transforms to
describe heat transfer processes [4]. The Fourier theory of heat propagation
had not been recognized for a long time; later on, this approach, referred to as
harmonic Fourier analysis, got various applications (Fourier series and
integrals, discrete transforms, fast discrete transforms) [5]; this theory was
completed after J. Fourier, when D. Hilbert became an authoritative
mathematician of that time (1862-1943). The direct integral Fourier transform
maps a given continuous time function whose modulus is integrated on an
infinite real time axis, to its spectral image as a function of the continuous
frequency, also defined on the infinite real axis, [6]. Integral transforms and
Fourier series are effectively used in various fields of physics and geometry,
optics, number theory, combinatory, signal processing, probability theory, etc.
In fact, in the Fourier series, the periodicity of the process is required, and the
Fourier integral considers functions integrated on an infinite time axis, or in an
infinite range of continuous frequencies. For these reasons, modern
applications of spectral analysis widely apply discrete Fourier transforms
(DFT), as well as special algorithmic methods to accelerate the DFT
processing, aka fast Fourier transform (FFT), [7].

An increase in the speed of Fourier transforms is an important problem
for many technical applications. In this direction, many works contributed.
The origins of the DFT and FFT go back to the aforementioned work of Gauss
(1805); however, the widely known today algorithm of the FFT was developed
after 160 years by IBM engineers (1965), [8]. The terms FFT and DFT are
similar in that the FFT is a special algorithm for calculating the DFT, which
differs from the direct calculation of the DFT by its determining formulas.

In recent years, works have appeared in the literature in which attempts
have been made to construct generalized Fourier transforms, [9 — 11]. In [9] a
formula found that relates the Fourier transform of a radial function on R,, with
the Fourier transform of the same function defined on R;+,. In [10] a survey in
a nutshell given on diverse known forms of Fourier analysis, including the so
called short-time Fourier transforms firstly introduced by D. Gabor (1946). In
[11] a generalized Fourier transform presented with the use of is the
cylindrical Bessel function. We note that in known forms of Fourier analysis,
the time and frequency domains commonly are not bound.

Objective. In this paper, we intend to construct generalized Fourier
transforms with bound time and frequency domains that include harmonic
series, integrals, and discrete Fourier transforms as special cases.
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Methodology aspects of Fourier analysis. In math literature for
engineers, the classic Fourier analysis is usually represented by two main
sections: "Fourier series" and "Fourier integrals"; an extra item is discrete
Fourier transform as a section of numerical methods for solving a wide class
of applied problems, [5]. Consider some methodological aspects of Fourier
series, integrals and discrete Fourier transforms with respect to engineering
applications.

Fourier series. The Fourier series calculus represents a periodic real
function f(¢)of a real argument #with a repetition period 7" that satisfies the
Dirichlet conditions, as the sum of a trigonometric series. According to the
Dirichlet conditions, the f(¢) function must be single-valued, piecewise-

continuous and piecewise-monotone (that is, to have a finite number of
discontinuities and extrema), and be absolutely integrable (have a finite

integral  value I0T| fr () | dt, [5—7]. The  direct  mapping
f(@) = {a,,a,,b,}of the function f(¢z) into the set of coefficients of the

Fourier series {a,,a,,b,}, n=1,2,..., has the form:

ag =, St

2 T 2-m-n-t
an_?jo f(t)'COSTdt’ I’l—l, 2, , (1)

2 T . 2-m-n-t
bn_ﬂo f@O)sin=="=dt, n=1,2,....

The inverse mapping on {a,,a,,b,} — f(f) means presentation the
function f'(¢) as Fourier series sum
+00
2-m-n-t . 2-m-n-t
f(@)—ag+ Z(an -c0S———— + b, -sin———). (2)
_ T T
n=1
If function f(¢) has a finite set of Fourier series terms, than inverse
mapping {a,,a,,b,} — f(t) in (2) is exhaustive (with some inaccuracy of
trigonometric functions calculation). In case of infinite set of Fourier series
terms, one can only approximate f(#) by partial sum of trigonometric series.

The Fourier series presentation (1) and (2) evolve to more compact complex
view in normalized interval 7 = 2 - m:

= . =0,+1,+
Cy 275.[0 f(t)-e dt, n=0,=1,+£2,... , 3)
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400 .
fO) > D, tef02n], 4)
n=—00
The complex coefficients ¢, are related to real numbers q,, a,, b, :
ag=2-co;  ap=cyytc ;. by=c oy,
=20 _niby _Gntihy ()
0= C_p= .

5 Capy = . C_
27 Tt 9

Integral Fourier transforms. The direct integral Fourier transform is
applied to a function f(¢#) defined on an infinite axis of the independent

argument? € (—o0,+00); as a rule but not necessary, the time axis supposed.

The complex Fourier integral is defined with respect to absolutely integrable
real or complex function f(¢#), i.e. such one, that the integral

[ £@) | dt exists and is finite [5 — 7].

Direct and inverse integral Fourier transforms are often written in
symmetrical form:

f@ == [ S0, o
S@ = [ f(@)-e"do.

Understanding Fourier series and integrals relationships. We will
compare the relevance of Fourier series and integrals (1-6) with respect to
engineering tasks. An actual issue is consideration about Fourier integral
transforms as generalized Fourier series. In other words, are Fourier series a
particular case of Fourier integrals? Formally, a periodic function that satisfies
the Dirichlet conditions is not absolutely integrable in an infinite time interval.

I, if texn-[0,n]
-1, if texn-[n,2n]

For instance, function f (t):{ is obviously

representable by Fourier series; instead, the integral f:| f() | dt = o does

not exist as a finite number. In fact, the requirement of f(¢)periodicity for
adequate representation by Fourier series can be mitigated, if determined f'(¢)
on a bound normalized intervalz € [0,2n], where f(z + 2n) = f(¢) ; herewith,
Fourier series calculation remains unchanged, but function f(¢) itself turns
into absolutely integrable and presentable by Fourier integral [7].
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It can be shown that the spectrum of such a function will also be
discrete, and the inverse integral transformation will become a sum very
similar to the sum of the Fourier series. But still, with this approach, the
coefficients c, of the Fourier series in (3) do not coincide with the amplitudes

f(®) of the discrete harmonics in (6). This is because of different

normalizations in Fourier integral and Fourier series coefficients calculus.
We will represent the direct and inverse transforms of (3) and (4) in
symmetric form:

et n=0,+1,+2, ...,

) =%jz'“f<t>-
f(t)—> Zc et g g0, 2n).

I/l——OO

(7

Compare (6) and (7) to get the following. If frequency ® in (6) takes
solely integer values , =n=0,+1,+2,..., then transforms (7) may consider

a special case of integral transforms (6). However, in general, this does not
happen. For complete embracing Fourier series by Fourier integral forms, an
essential detail needed more, this is a unified way of scaling time ¢ and
frequency . This aspect discussed onwards in the context of the time-to-
frequency quantum uncertainty principle.

Discrete Fourier Transforms. In applications, the discrete form of
Fourier transforms (DFT) widely used, as well as special algorithms for
accelerated computation of the DFT — the so-called Fast Fourier transforms
(FFT), [7 — 8]. The symmetric form of direct/inverse discrete DFT is:

1 N-1
x(k) = Zx(n) exp(l—kn) k=0,1,2,.., N—-1,

(8)
x(n)= \/7 x(k)-exp(i-z;]\;c-k-n), n=0,1,2,...,N-1.

where x(n) , x(k) are ordered sets of N real or complex numbers. These sets of
numbers can be regarded as the coordinates of vectors in some complex space;
so, for simplicity, we will designate both x(n)and x(k) as vectors x and x, if

no ambiguity seemed. The discrete Fourier transforms can also be written in
terms of matrix or tensor operations for convenient program coding.

Let complex kernels of sum operators (8) be complex conjugate unitary
matrices F and F~ with the property F* - F = F - F" =1, where I is the
diagonal unit matrix:

107



BicHuk HauyioHanbHO20 mexHiyHo20 yHisepcumemy "XI1I", 2017, Ne 21 (1243)

* * 1 2.7
F =F ’k = [—. -4 —k- ,
(n,k) N exp(—i N n)

9)
F=F(k n)—\/z-ex 20k
’ N PN '
With notation introduced above, the DFT pair becomes:
x=x-F, (10)
x=x-F.

Substitute x from the first into the second transform (10), we obtain
x=xF=(x-F)F=x-(F -Fy=x-T=x. (11)
The unitarity of discrete Fourier transform matrix. The unitarity of
the discrete Fourier transform matrix is the key feature to validate the one-to-
one mapping property of (x = x- F) <> (x = x - F"). Unlike rather abstract
reasoning for convergence Fourier series sum and inverse integral Fourier

transform [6, 7], the unitarity of the discrete transformation matrix is simply
derived by elementary geometric progression and primitive complex unity root

[9].

Let a geometric progression given as a numerical sequence {a,} with a
real or complex denominatorg # 1:

2
{ap} =ag,a¢-q,a9-q ,...:{ao-qk}, k=0,1,2,... . (12)
The partial sum of a segment of this sequence is calculated by the
following formula, [5]:

K —_— .
> {ak}=“LT“§", L<K. (13)
k=L

In particular, the initial sum of the progression terms from 0 to N is

N — .
3 {ag} =%. (14)
k=0

Let consider a special case of a geometric progression — the so-called
cyclic progression, in which the initial and final elements of a periodic
segment match, i.e. a; =ag, L < K. In this case, the sum of the cyclic

segment terms is simplified
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K
ap—ay - 1-
> {ak}=L1—Lq=0L '1—q=aL- (15)
k=L —4 —4
K
In particular, if a, = a, =1, then (15) evolves to > {a,} = 1. This will
k=0

be used in consideration the primitive complex unity root 1. defined as [9]:
lo =exp(i-2-m), i:=+-1L (16)

The following property of the primitive root 1.holds: if some number p
is an integer, then the expression (1.)"equals 1; if p not integer, then

(1.)" # 1: integer

=1, if p isinteger number,

(lc)”{ (17)

#1, if p is not integer number.

It is not hard to find property (17) using the well-known Euler formula
exp(i- @) = cos@+i-sin¢@, taking into account that cos2m =1, and

sin 2t = 0. Now, consider the following sequence

1
{exp(i-“T“)"}={[(lc)N]"}, Wk N k=012, N. (I8

According to the primitive root 1.property (17), along with | pu |< N,
Ll
the ¢ = (1.)" can be denominator of the following geometric progression

1
AN T =1g"}, Inl<N; k=0,12,. N, (19)
Obviously, the initial and final terms of sequence (19) have the same

L LY
values:a, = q" =1; ay = q" =[1)"]" =(1.)" =(1.)" =1,as p is an
integer number. The partial sum of (19) is

N ﬂk N .
DIA)NT =D ¢" =1. (20)
k=0 k=0

Since the last term of the series (19) is 1, it follows from (20) that partial
sum of (19) omitting the last term with number N, is zero:
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N-1 B . N .
Z[(lc)N] =Zq -1=0. (21)
k=0 k=0

The formula (21) is the principal key to justify the unitarity of the DFT
matrix. Consider the product of DFT (8) substituting » by min F matrix
defined in (9):

F*-F—l-]vz_le*(n k) F(k m)—l-Nfex @282 (22)
N k=0 , , N k=0 ’ N '

Denote w=n-m. Sincen < Nym < N, it is |u|=|n—-m|<N and

n—m
; # 1; therefore, exp(i-2- = ( )

B N
- k) =[exp(i - 2 nN)] [(I)YT.

Compare the last expression with (21), we can see that F* - F =1 for n = m,
and F*-F =0 for n # m, ie. F, Fare unitary matrices. Hence it is also
easytoshowthatF - F" = (F -F) =1 =1.

Generalized Fourier Transforms. It was shown above that integral
Fourier transforms (6) look like embracing the Fourier series (3); however, the
non-correspondence of time/frequency scaling in Fourier series (3) and
integrals (6) hinders complete unification of these two forms of harmonic
analysis. These issues are discussed below in more details.

Consider relationship between Fourier series and DFT. Suppose vector

x = x(n) as function f(f) quantization product, assuming that f(¢)
determined on a bounded half-open interval ¢ € [0,7)and satisfied the
Dirichlet conditions (in order to be representable by Fourier series). Despite
function f(¢) is not periodic in our case, the time interval [0,7)can be
interpreted as a part of an extended time interval 0 < ¢ < oo [7]

U{[0,7)1,[0,7)2,[0,T)3, ...)=[0, 3:T), ...>(0<t<w). (23)

Now, the closure of a half-open interval [0, 7) by a point ¢ = T together
with its neighborhood, along with function definition in the neighborhood
of Tunder condition £(0) = f(T), allows function f(¢) in a half-open
interval ¢ €[0,7) considered as one period of a periodic
function f'(¢) determined on the interval 0 < ¢ < oo. Function f(¢) defined on a
closed interval [0, T'] of the real axis ¢ € R where f(0) = f(T), we denote as
quasi-periodic function with a half-open repetition period t € [0,T)that is
closed on the left and is open to the right. However, integration f(¢) on entire
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closed interval [0,7] in (1) is not absolutely accurate to our mind, as point
t = T does not belong to the period of function f(¢). This aspect seems to be

the core issue in unification diverse forms of harmonic analysis. Fig. 1 shows
vector x = x(n) as quantified function f(z) on interval ¢ € [0, T] partitioned

T
in 8§ quanta Af = re Eight discrete function samples are taken at the

beginning of each At quantum. The last point n = 9 of the interval does not
belong to the period of function repetition and does not carry additional
information, since x(9) = x(0). To overcome the issue of the wrong extra

point within the closed integration interval ¢ €[0,7] of a periodic
function f(¢), we propose to change the commonly used open time axis
—wo <t <+ for a closed loop-time, or fopological time-circle C with
normalized lengthx/ﬂ . Herewith, two marginal points of closed linear
interval ¢ € [0,7] will merge into one joint point ¢ = 0 = 2 -1, Next, we
postulate the quantum uncertainty relationship (QUR) to bound frequency and

time arguments along with known Heisenberg uncertainty principle in
quantum physics [10]
At-Ao=2T (24)
N

Define symmetric normalized form of QUR [11]

At=Ao= 2T (25)
N

A
Frt). x(n)

_x(n) | 11t) /\
VP X

N o \

>—O-\ f%HA—{%—Egi»
CENE/ T T TN/
- Al \| /

oo w s

=N

Fig. 1. Vector of function quantization in time

111



BicHuk HauyioHanbHO20 mexHiyHo20 yHisepcumemy "XI1I", 2017, Ne 21 (1243)

In this case, time and frequency arguments ¢, ® € C vary in normalized

time-circle interval C. Here, DFTs (8) evolve to integral sums along unified
contour C [5, 6]:

- 1
X(@)=—=- ) x(t)-exp(—i-m-t)-At,
N2 tgé
e (26)
x(t)=—- Zx((o) -exp(i-t-®)-Aw.
V2:T gec
Substitute x(m) in the second equation of (26) for its form in the first

equation (26), changing argument ¢ for t in the second equation (26), we
obtain the following identity:

x(t)= A;'.im. Z)c(t)- Zpr[i.(r—t).(o] =

teC weC

= > x(t)-1(t,t) = x(1). (27)

teC

Introduce "unified summation-integration operator" (USO) on a circle
interval, which is scaled to the standard interval Cof +/2- 7w length; it is
similar to common contour integral, so denote USO as fﬁ f()in time domain

or :fw /() in frequency domain. For example,

. 1
§/ O =lima o —- 2 1) (28)

teC

Depending on the context, we understand if f( ) as integral sum or as a

contour integral where N — o, A

N-ow

2-m .
=—— —> 0. Rewrite (26)
N
omitting df or dw as default given symbols:

x(®) = §tx(z) cexp(—i-®-1),

x(1)= ﬂ);(@) cexp(+i-t- ). (29)

A pair of equations (29) we define as generalized Fourier transforms
(GFT). Due to (27), it is clear that GFTs provide one-to-one mapping of the

original function x(¢)into its spectral image x(®): x(t) <> x(o) for any finite
or infinite number of intervals of partitioning the argument, starting from the
value N =2 (solely inaccuracy may occur in approaching trigonometric
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functions). The GFT introduced above may have two marginal interpretations
— discrete form (if N >1 is finite digital number) and continuous form
(if N — oo, At, A® — 0), Fig. 2. In discrete interpretation form, the GPF (29)

is equivalent to DFT with special scaling in (8). In continuum interpretation
form, we obtain unified transforms which include Fourier series and integrals
as particular cases among many other intermediate forms.

Besides, depending on specific spectrum distribution | x(k) |*, two
extreme typical cases observed (both in the discrete and continuum forms):

1) Prototype of Fourier series (spectrum | x(k) |* concentrated at points
of a multiple frequency); when N — o, At — 0, we obtain Fourier series;

2) Prototype of Fourier integral (spectrum | x(k) | distributed fairly
evenly); when N — o, At — 0, we obtain Fourier integral.

Generalized Fourier Transforms
GFT
N > ©
N At,Aw — 0
At,Aw # 0 ’
Discrete Fourier Transforms Continuum Fourier Transforms
DFT CFT
Discrete Fourier Continuum Fourier
Series DFS Series CFS
| Intermediate |
Fourier
Discrete Fourier Transforms Continuum Fourier
Integral sum DFI Integral CFI

Fig. 2. Interpretation diversity of generalized Fourier transforms

Based on generalized Fourier transforms (GFT), it becomes rather
conditional in separation the classes of functions representable by Fourier
series or integrals, since many intermediate forms can be observed by GFT.
Similarly, no sense to categorize discrete and continuum Fourier transforms,
as in limit N — oo, the GFT embraces both Fourier series and integrals among
the other transitional forms. Given approach seems reasonable for practical
applications and theoretical study by engineers.

Conclusion. An adequate utilization of theoretical methods is a non-
trivial task in applied researches. The classic approach provides at least three
widely known forms of signal representation by trigonometric functions
(Fourier series, Fourier integrals and discrete Fourier transforms), as well as
variety of application algorithms; this raises methodological issues for
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development engineers caused by the lack of clear problem identification for
relevant methods, as well as the absence of exact formalized relationships
between the three forms of Fourier analysis. In this work, unification of three
popular forms of Fourier harmonic analysis introduced based on fundamental
physical principle of quantum uncertainty; this principle formulated as
quantum uncertainty relation between the time and frequency arguments.
Similar to classic Riemann integral, presented a unified summation-integration
operator (USO) with symmetrically scaled variables of time and frequency;
due to the USO, symmetric forms of generalized direct/inverse Fourier
transforms constructed. These observations provide a unified method of
harmonic Fourier analysis both in theoretical and empirical planes.
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B cratee paccMaTpuBarOTCs BOIMPOCH TAPMOHHUYECKOrO aHaiwm3a (YHKIUH, B TOM
grcie psiabl @ypbe, HHTErpaibl U JUCKPETHBIC IPeoOpa30BaHus ¢ TOYKH 3PCHUS HHKCHEPHBIX
NPWIOKEeHUH. BBeIeHO OTHOIIICHHE KBAHTOBON HEOMPEACICHHOCTH JJIsl CBSI3aHHBIX YaCTOTHO-
BPEMEHHBIX METPUK B YAaCTOTHOM IpEACTaBICHWH (QYHKIUH BpeMeHH. OmpeneneHbl
0000menHsle  mpeobpaszoBanuss Dypbe Ha OCHOBE YHU(QUIIMPOBAHHOTO OIEpaTopa
CyMMHpOBaHUs-uHTErpupoBanus. Win.: 2. bubmuorp.: 11 Ha3B.
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In this paper, basic forms of Fourier analysis considered — harmonic series, integrals
and discrete transforms with respect to engineering approach. Quantum uncertainty relation
introduced for bound time-frequency metrics in harmonic function presentation. Generalized
Fourier transforms determined on the basis of unified summation-integration operator. This
extends the scope of harmonic analysis application. Figs.: 2. Refs.: 11 titles.
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