Кафедра "Математичне моделювання та інтелектуальні обчислення в інженерії"

Постійне посилання зібрання

Офіційний сайт кафедри http://web.kpi.kharkov.ua/dpm

Від 2022 року кафедра має назву "Математичне моделювання та інтелектуальні обчислення в інженерії", первісна назва – "Динаміка та міцність машин".

Iсторія кафедри починається в 1930 році, коли в нашому університеті, що називався тоді Харківський механіко-машинобудівний інститут, була створена спеціальність "Динаміка і міцність машин".

Засновниками спеціальності були видатні вчені: академіки Йоффе Абрам Федорович, Обреїмов Іван Васильович, Синельников Кирило Дмитрович, професор Бабаков Іван Михайлович. В різні роки кафедрою завідували: член-корреспондент АН УРСР Майзель Вениамин Михайлович (1936-1941); академік АН УРСР Філіппов Анатолій Петрович (1948-1960), професор, доктор технічних наук, лауреат Державної премії України Богомолов Сергій Іванович (1960-1991); професор, доктор технічних наук, академік АН вищої школи України Львов Геннадій Іванович (1992-2020). Від 2020 року і по теперішній час завідувач кафедри – лауреат премії Президента України для молодих вчених за видатні досягнення, доцент, кандидат технічних наук Водка Олексій Олександрович.

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут". Наукова школа з динаміки і міцності машин, створена в нашому університеті, широко відома у світі.

У складі науково-педагогічного колективу кафедри працюють; 2 доктора технічних наук, 7 кандидатів технічних наук, 1 доктор філософії; 2 співробітника мають звання професора, 5 – доцента.

Переглянути

Нові надходження

Зараз показуємо 1 - 20 з 418
  • Документ
    Методичні вказівки до лабораторної роботи "Згинні коливання пластин"
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Водка, Олексій Олександрович; Трубаєв, Олександр Іванович; Ульянов, Юрій Миколайович; Місюра, Сергій Юрійович
    Методичні вказівки призначені для виконання лабораторної роботи з курсу «Динаміка машин» для здобувачів спеціальності 113 «Прикладна математика». У методичних вказівках розглянуто згинні коливання круглої і квадратної пластин. Методом скінченних елементів розраховано частоти та форми коливань пластин вказаного класу. Експериментально визначені частоти і форми вільних коливань круглої і квадратної пластин. Проведене порівняння результатів двома методами, що показало хорошу збіжність отриманих частот. Реалізовані підходи дають можливість досліджувати динамічні характеристики пластин інших конфігурацій і можуть бути використані для оцінки точності інших підходів.
  • Документ
    Исследование динамических процессов, возникающих в домре во время игры на ней
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Суханова, О. И.; Водка, Алексей Александрович
  • Документ
    Статистична оцінка залишкової міцності та надійності коррозійно пошкодженного трубопроводу
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Потопальська, К. Є.; Ларін, Олексій Олександрович
  • Документ
    Development of a web-application for creating notes and schedules
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Chechel, V. M.; Vodka, O. O.
  • Документ
    Розробка комп'ютерної системи автоматизації побудови викрійки одягу людини
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Сенютич, А. С.; Ларін, Олексій Олександрович
  • Документ
    Використання штучної нейронної мережі для обробки результатів експеримету
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Погребняк, С. В.; Водка, Олексій Олександрович
  • Документ
    Трехмерное конечно-элементное моделирование напряженного состояния бедренной кости человека
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Пернатій, А. В.; Ларін, Олексій Олександрович
  • Документ
    Розробка програмного забезпечення для комп'ютерної симуляції випадкового пошкодження на трубопроводі
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Момот, Є. Б.; Ларін, Олексій Олександрович
  • Документ
    Розробка комп'ютерної системи для інтелектуального аналізу механічних властивостей матеріалів
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Лавщенко, Р. Р.; Водка, Олексій Олександрович
  • Документ
    The parametric modeling of the rotor of the centrifugal compressor for the determination of critical velocities
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Kamynska, M. D.; Martynenko, G. Yu.
  • Документ
    Проектування та розробка web-сайту для пошуку відомостей про матеріали
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Бондаренко, К. С.; Водка, Олексій Олександрович
  • Документ
    Розробка програмного рішення прикладної задачі механіки на основі чисельних методів
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Васильченко, Нікіта Андрійович; Шаповалова, Марія Ігорівна; Федоров, Віктор Олександрович; Овчаренко, Віталій Володимирович
    У роботі розглядається питання важливості вибору матеріалів для виробництва інструментів у фрезерній справі та визначення їхньої придатності шляхом детального аналіз міцності та поведінки під час обробки матеріалів. Для покращення довговічності та оптимізації виробництва, пропонується використовувати математичні моделі та чисельні методи, зокрема метод найменших квадратів та метод вирішення систем лінійних алгебраїчних рівнянь (СЛАУ) за допомогою методу Гауса з вибором головного елементу. Ці методи застосовуються для апроксимації експериментальних даних та аналізу характеристик матеріалу, забезпечуючи точність в оцінці його властивостей. Досліджено ситуації встановлення функції, коли лише деякі значення відомі, а також спрощення обчислень відомих функцій. Робота включає програмне забезпечення для чисельного розрахунку та візуалізації різних типів задач, які успішно вирішуються за допомогою розглянутих методів. Програмний алгоритм для апроксимації даних передбачає збереження інформації у текстовому файлі, введення користувачем кількості змінних та обрання кількості та типу базисних функцій. Після введення користувачем параметрів програма формує систему рівнянь на основі обраних функцій, визначає коефіцієнти апроксимації та будує графік для об'єктивної оцінки результатів. Завдяки зручному інтерфейсу користувач може легко взаємодіяти з програмою, шляхом введення значень. Аналіз результатів здійснюється за допомогою графічного відображення, що спрощує робочий процес та полегшує сприйняття отриманих даних. Апроксимація функцій за допомогою чисельних методів може бути ефективно використана в різних сферах для вирішення прикладних задач механіки.
  • Документ
    Чисельне моделювання повзучості лопатки турбіни з монокристалічного сплаву
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Неманежин, Євген Олександрович; Львов, Геннадій Іванович; Торба, Юрій Іванович
    Статтю присвячено моделі повзучості монокристалічного сплаву та розробці методики ідентифікації матеріальних параметрів по результатам фізичних експериментів. Виконано скінчено-елементний аналіз повзучості лопатки газотурбінного двигуна. Повзучість є одним із найнебезпечніших видів деформування в умовах експлуатації лопаток турбін. В процесі вивчення проблематики оцінки міцності турбінних лопаток авіаційних двигунів та енергетичних установ, особливу увагу слід приділити дослідженню перерозподілу напружень при повзучості. Характеристики кристалографічних структур сучасних лопаток турбін мають дуже значний вплив на проходження процесу розвитку тріщин на деталі в процесі роботи двигуна. На сьогоднішній день, турбінні лопатки виготовляються методом монокристалічного лиття. Такий тип структури матеріалу лопаток характеризують ортотропні механічні властивості. У цьому дослідженні розглядається модель стаціонарної повзучості для анізотропного жароміцного монокристалічного сплаву з кубічною симетрією. Авторами проведено чисельне моделювання параметрів матеріалу з використанням відомих літературних властивостей повзучості монокристалів. Описано алгоритм, який дозволяє визначити деякі характеристики повзучості монокристалів. Параметри наведених співвідношень можна отримати після проведення прямих експериментів, або базуючись на мікромеханічному аналізі, на прикладі композиційних матеріалів. Авторами проведено розрахунок констант повзучості типового жароміцного монокристалічного сплаву в результаті апроксимації його кривих повзучості, які були отримані в результаті проведення експерименту. На основі рівняння Нортона-Бейлі та використовуючи розрахунковий комплекс Maple Release 2021.0, було побудовано графік залежності швидкості деформації повзучості від рівня прикладеного до матеріалу навантаження, а також визначено мінімальну швидкість деформації та константи повзучості. Результати обчислень були застосовані для скінчено-елементного моделювання повзучості на прикладі твердотільної моделі лопатки турбіни високого тиску. На базі комплексу ANSYS Workbench проведено декілька серій розрахунків, зокрема, обчислення пружної задачі при навантаженні деталі відцентровими силами, а також накопиченню деформацій повзучості при різному часі дії впливу. Побудовано графіки зміни еквівалентних напружень та деформацій повзучості в залежності від часу.
  • Документ
    Порівняльний аналіз динамічних характеристик суцільнометалічної, складної та композиційної лопаток із однаковим профілем з урахуванням впливу з'єднання елементів та аеродинамічних навантажень
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Мартиненко, Володимир Геннадійович
    В роботі представлений порівняльний аналіз динамічних властивостей лопаток однієї роторної машини, що мають одну і ту ж саму форму профілю, але виконані з трьох різних матеріалів, а саме алюмінієвого сплаву, складного матеріалу, що поєднує в собі алюмінієвий сплав та сталь, та композиційного матеріалу, яким виступає односпрямований склопластик. У випадку суцільнометалічної лопатки, її профіль та хвостовик виконані з алюмінієвого сплаву. У випадку складного матеріалу профілю лопатки хвостовик виконаний із сталі, що є також складовою частиною матеріалу профілю. У випадку композиційної лопатки хвостовик є сталевим та з’єднаний у кореневому перерізі з її композиційним пером. Основна увага при порівнянні моделей механічної поведінки трьох типів лопаток приділяється впливу з’єднання складних та композиційних елементів із хвостовиком на динамічні характеристики лопатки в цілому, що досягається за допомогою розгляду контактних взаємодій елементів під дією відцентрових та аеродинамічних навантажень та подальшій передачі переднапруженого стану лопаток у модальний аналіз для визначення динамічних характеристик зразків та їх порівняння. Для коректного відображення закріплення елементів у робочому колесі вентилятора у випадку алюмінієвої лопатки розглядається сектор циклічної симетрії ротора, що дає змогу зробити висновок про можливість подальшого окремого розгляду лопатки для визначення її динамічних характеристик за рахунок набагато більшої жорсткості з’єднання лопатки із робочим колесом у порівнянні із жорсткістю пера лопатки та поширене на випадок складної лопатки розглядом сталевого хвостовика із алюмінієвим профілем з жорстким затисненням моделі по контактним поличкам хвостовика, а на випадок композиційної лопатки розглядом пера із жорстким затисненням у кореневому перерізі, де відбувається кріплення до сталевого хвостовика лопатки. Результати порівняльного аналізу динамічної поведінки трьох типів лопаток однакового профілю представлені у вигляді дослідження власних частот та форм коливань лопатки.
  • Документ
    Сучасний алгоритм лінійного та квадратичного програмування в оптимізації та задачах деформування конструкцій змінної структури в умовах контактування
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Грищенко, Володимир Миколайович
    Різноманітні математичні задачі, в яких поставлена мета пошуку екстремуму функціоналу, відносяться до задач математичного програмування, задач оптимізації. Практично спрямованих проблем пошуку оптимального рішення надзвичайно багато в економіці, управлінні, техніці та інших. Вони пов’язані з підвищенням ефективності виробництва, зниженням витрат ресурсів, удосконаленням конструктивних рішень та технологічних процесів, зниженням маси, габаритів тощо. Серед них важлива роль приділяється методам обмеження максимальних напру- жень, обумовлених зовнішніми навантаженнями. Розв'язання таких задач розпочинається з математичної формалізації. В якості параметрів варіювання вибирають конструктивні, економічні або технологічні показники. Пошук найкращого рішення зводиться до підбору сукупності параметрів, які надають стаціонарне значення функції цілі. Екстремальні задачі практичної орієнтації містять в математичних моделях обмеження типу рівності-нерівності. В поліпшенні технічних характеристик машин суттєва роль належить інженерно-технічним працівникам, які на етапі проектування знаходять оптимальні варіанти. При цьому суттєвим елементом процесу проектування є моделювання визначальних процесів в конструкціях з врахуванням основних факторів впливу та сценаріїв поведінки. Оптимізація – важливий напрямок прикладної математики, який надає ефективні інструменти проведення такого моделювання. В роботі [3] запропоновано Universal Algorithm − чисельну схему рішення задач квадратичного програмування (КП), для обчислення оптимальної точки широкого кола прикладних задач. При цьому задача лінійного програмування (ЛП) розглядається як частинний випадок задачі (КП). Тобто в універсальному алгоритмі постановки 2-х задач оптимізації формалізовані в єдиній та зручній формі симетричної матричної залежності, що дає змогу побудувати єдиний ефективний алгоритм на базі операцій матричної алгебри. Зокрема, дозволяє розглядати практичні задачі обчислення НДС в конструкціях змінної структури, що складаються з окремих частин пов’язаних односторонніми зв’язками. Основна ціль даної роботи в аналізі поведінки алгоритму при збільшенні кількості обмежень типу нерівності, уточненні обчислювальної схеми, формулюванні висновків. В якості прикладів роботи алгоритму розглянуті дві модельні задачі. Це класична "транспортна" задача ЛП та поведінка моделі мостової споруди з односторонніми зв’язками у вантах при варіаціях вітрових навантажень. Кількість вант збільшена до 20 а обмежень нерівностей до 40.
  • Документ
    Застосування обчислювальних методів у задачах аеробалістики. Визначення cпряжених кутів кидання та побудова балістичних траєкторій
    (Застосування обчислювальних методів у задачах аеробалістики. Визначення cпряжених кутів кидання та побудова балістичних траєкторій, 2023) Федотов, Денис Сергійович; Овчаренко, Віталій Володимирович; Федоров, Віктор Олександрович
    Вивчена задача аеробалістики артилерійських нереактивних снарядів на прикладі спрощеної математичної моделі. Як окремі підзадачі розглянуті: початкова задача, визначення горизонтальної дальності пострілу (метод Рунге-Кутти 4-го порядку з модифікацією поліноміальної інтерполяції); задача оптимізації (метод Пауелла), визначення кутів максимальної дальності — кутів кидання, при яких досягається максимальна горизонтальна дальність; крайова задача (метод стрільби з методом Ньютона-Рафсона/ методом січних/ методом поліноміальної інтерполяції), визначення кутів кидання при заданій відстані та задача знаходження спряжених траєкторій — настильної та навісної траєкторій, при яких досягається однакова горизонтальна дальність польоту снаряда при різних кутах кидання; обернена задача геодезії (метод Вінсенті), визначення геодезичної відстані між двома географічними точками на несферичній моделі Землі WGS-84. Графічно проілюстровані залежності від кутів кидання наступних характеристик: горизонтальна та вертикальна дальності, максимальна вертикальна та горизонтальна складова швидкості, модуль кінцевої швидкості, кут падіння та час польоту снарядів. Обґрунтовано існування спряжених траєкторій та визначено стратегію для інтервального запуску снарядів з метою одночасного враження цілі по різних траєкторіях. Програмування обчислювальних методів, алгоритму розв’язання поставленої задачі та елементи візуалізації були реалізовані за допомогою пакету прикладних програм MATLAB, розроблена методика та програмне забезпечення показали ефективність та можливість їх практичного застосування.
  • Документ
    Розробка програмного забезпечення для моделювання та візуалізації мікроструктури матеріалу методом клітинних автоматів
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Водка, Олексій Олександрович; Шаповалова, Марія Ігорівна; Розова, Людмила Вікторівна; Гріцкова, Валерія Іванівна; Корж, Анастасія Сергіївна; Мітясов, Нікіта Олександрович; Семененко, Олег Сергійович; Скринник, Катерина Юріївна; Чепела, Юлія Володимирівна
    Мікроструктури, як організація та розташування матеріалів на мікроскопічному рівні, мають суттєвий вплив на властивості та поведінку матеріалів, тому відіграють важливу роль для багатьох наукових і технічних галузях. Важливість синтезу внутрішньої структури полягає в можливості аналізу та вивчення взаємодії між елементами матеріалу, а також визначення оптимальних параметрів для досягнення бажаних властивостей. Дослідження та відтворення мікроструктур сприяють розробці нових матеріалів з унікальними властивостями в різних галузях, включаючи електроніку, авіацію, медицину та енергетику. Одним із ключових напрямків розвитку технології є візуалізація мікроструктур, яка дозволяє перетворити складні дані про внутрішню будову на зрозумілі візуальні моделі, спрощуючи аналіз та інтерпретацію. У роботі описано інформаційну систему "MaterialViz", яка дозволяє детально вивчати структуру матеріалу. Вона включає зручний інструментарій для аналізу та дослідження структурних характеристик матеріалів, а також можливість тривимірної візуалізації даних, що покращує розуміння структури та взаємодії його елементів. Користувачам надається можливість збереження та завантаження результатів досліджень, що сприяє зручності роботи та співпраці з іншими дослідниками. Використання додатку можливе в різних галузях, включаючи матеріалознавство, металургію, енергетику, електроніку та біомедицину, допомагаючи дослідникам оптимізувати та розробляти нові матеріали з покращеними характеристиками. Загалом, комп'ютерний застосунок "MaterialViz", є потужним інструментом для аналізу та вивчення структури матеріалів, що допомагає здійснювати глибокий аналіз та отримувати цінні візуальні висновки. Розроблена інформаційна система, призначена для комп'ютерного моделювання мікроструктур матеріалу за допомогою ряду методів імовірнісних клітинних автоматів. Реалізовані чотири типи алгоритми росту кристалів, що вирішує поставлені завдання та відповідає всім вимогам.
  • Документ
    Чисельне та експериментальне дослідження конічного з'єднання лопатки роторної машини
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Мартиненко, Володимир Геннадійович
    В роботі представлене експериментальне та чисельне дослідження конічного кріплення хвоста алюмінієвої лопатки вентилятора головного провітрювання шахти, що засновується на випробуваннях спрощеної натурної моделі з відкинутим пером та її подальшому скінченно-елементному аналізі. Розрахункова модель враховує пружнопластичні властивості матеріалів та нелінійні контакти із тертям. Запропоноване з'єднання складається з алюмінієвого конічного хвоста лопатки, двох сталевих фіксаторів із аналогічними конічними поверхнями та двох сталевих болтів, які поєднують фіксатори навколо хвоста. Попередня затяжка болтів дозволяє зафіксувати лопатку в ненавантаженому стані у гнізді та запобігти її небажані повороти. Така затяжка враховується в скінченно-елементному аналізі за допомогою визначення з дотриманням спеціальних правил осьової сили преднатягу болтів. За допомогою гідравлічного пресу, що діє на нижню поверхню хвоста лопатки, імітується вплив відцентрового навантаження на конічне з'єднання з боку пера лопатки. Нелінійний статичний аналіз пружнопластичної поведінки конструкції дозволяє визначити руйнівні навантаження, що спричиняють розрив болтів із подальшим роз'єднанням фіксаторів та вильотом лопатки із посадочного гнізда. Графіки еквівалентних за Мізесом напружень свідчать про те, що максимальні напруження досягаються в робочій частині болтів, що повністю відповідає характеру руйнування конструкції при досягненні максимального еквівалентного навантаження на неї. Експериментальне дослідження підтверджує коректність визначення контактних напружень в місці конічної посадки. Відповідність результатів статичного аналізу результатам натурного експерименту дає можливість зробити висновок про коректність проведеного скінченно-елементного моделювання. Це дозволяє використовувати розроблену постановку задачі для визначення міцності конструкцій вентиляторів із конічними з'єднаннями лопаток без виконання попередніх експериментальних досліджень. Окрім того, розроблена методика може бути поширена на більший круг конічних та циліндричних з'єднань завдяки простоті підходу та універсальності постановки нелінійної скінченно-елементної задачі, що моделює конструкції із попередньо навантаженими чи затягнутими елементами.
  • Документ
    Особливості моделювання та чисельного аналізу динаміки ротора турбокомпресора з активними магнітними підшипниками
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Кучма, Михайло Володимирович; Мартиненко, Геннадій Юрійович
    Стаття досліджує та порівнює два підходи до моделювання та оцінки динаміки роторів у системах з активними магнітними підшипниками (АМП). Основний акцент робиться на аналізі динаміки ротора турбокомпресора газоперекачувального агрегату з врахуванням унікальних особливостей АМП, що використовуються для контролю стійкості руху. Для моделювання динаміки ротора на АМП використовуються два різні методи: перший – твердотільне моделювання, яке враховує деформацію навісних елементів ротора та їх вплив на його власні частоти та критичні швидкості; другий – масове або часткове моделювання, де всі навісні елементи заміщуються масово-інерційними елементами. Обидва підходи ґрунтуються на застосуванні методу скінченних елементів. Мета дослідження полягає в визначенні переваг та недоліків використання обох методів для моделювання та розрахунку характеристик роторної динаміки систем, які підтримуються АМП. Порівняння базується на різноманітних статичних та динамічних аналізах. Числові експерименти надають результати у вигляді розрахунків критичних швидкостей та форм коливань (прецесій). Це дозволяє оцінити можливість резонансних режимів системи та уникнення небезпечних ситуацій. Отримані результати підтверджують точність обох методів і можуть служити основою для вибору підходу в залежності від конкретних потреб дослідника.
  • Документ
    Методичні вказівки до розрахункових завдань "Математичні моделі та розрахунки міцності матеріалів та конструкцій" з курсу "Теорія плинності та міцності"
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Федоров, Віктор Олександрович
    Різні розділи теорії тіла, яке деформується, такі, як теорії пружності, пластичності, повзучості, дозволяють дослідити напружено-деформований стан конструкцій під дією навантажень в різних умовах їх функціювання. Але кінцевою метою цих досліджень є оцінка їх міцності та прогнозування їх можливого руйнування. Розрахункові завдання з цієї теми виконуються з метою закріплення теоретичних відомостей і набуття практичних навичок з оцінок міцності матеріалів у різних умовах їх функціонування та з точки зору різних теорій руйнування. Для виконання роботи слід знати основи теорії напружень і деформацій та засвоїти відповідні розділи теорії міцності. Для попереднього контролю цих знань тут сформульовані запитання. Робота виконується в окремому зошиті та захищається протягом двох тижнів з моменту отримання завдання. Захист передбачає відповіді на контрольні запитання та коментування розрахунків і результатів. Оцінювання здійснюється за такими основними параметрами: – знання теоретичних засад; – повнота і правильність виконання завдання та коментарів до нього; – своєчасність складання; – акуратність оформлення.