Please use this identifier to cite or link to this item: http://repository.kpi.kharkov.ua/handle/KhPI-Press/25750
Title: Обчислення потрійних інтегралів від тригонометричних функцій з використанням кусково-сталої інтерфлетації
Other Titles: Computing triple integrals of trigonometric functions using piecewise constant interflatation
Authors: Нечуйвітер, Олеся Петрівна
Keywords: цифрова обробка сигналів; швидкоосцилюючі функції; кубатурні формули; інтерфлетація функцій; коефіцієнти Фур’є; high oscillating functions; cubature formula; interflatation; error of the method; error of rounding
Issue Date: 2016
Publisher: НТУ "ХПІ"
Citation: Нечуйвітер О. П. Обчислення потрійних інтегралів від тригонометричних функцій з використанням кусково-сталої інтерфлетації / О. П. Нечуйвітер // Вісник Нац. техн. ун-ту "ХПІ" : зб. наук. пр. Темат. вип. : Математичне моделювання в техніці та технологіях = Bulletin of National Technical University "KhPI" : coll. of sci. papers. Ser. : Mathematical modeling in engineering and technologies. – Харків : НТУ "ХПІ", 2016. – № 16 (1188). – С. 67-71.
Abstract: Робота присвячена розробці математичних моделей цифрової обробки сигналів та зображень на прикладі побудови кубатурних формул наближеного обчислення інтегралів від тригонометричних функцій трьох змінних. В статті розглядається кубатурна формула обчислення 3D інтегралів від тригонометричних функцій з використанням інтерфлетації у випадку, коли інформація про функцію задана її слідами на площинах. Отримано оцінку похибки нанаближення кубатурної формули на класі диференційовних функцій.
The paper deals with the improvement of mathematical models of digital signal and image processing on the example of constructing cubature formulas of approximate calculation of integrals of highly oscillating functions of three variables. The feature of the proposed cubature formulas is using the input information about the function as a set of traces of the function on planes or a set of traces of the function on lines or as a set of values of the function in points. The theory of interlineations and interflatation of functions is the most effective in this case. The estimate for the error of the cubature formula of approximate calculation of the integral of trigonometric functions of three variables is received in the case when the information about the function is its traces on perpendicular planes. The cubature formula is constructed using the interflatation operator; the example demonstrates the validity of the theorem about the error.
URI: http://repository.kpi.kharkov.ua/handle/KhPI-Press/25750
Appears in Collections:Вісник № 16

Files in This Item:
File Description SizeFormat 
vestnik_KhPI_2016_16_Nechuiviter_Obchyslennia.pdf626,11 kBAdobe PDFThumbnail
View/Open
Show full item record  Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.