Automatic Extraction of Synonymous Collocation Pairs from a Text Corpus
Дата
2018
ORCID
DOI
doi.org/10.15439/2018F186
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
Polskie Towarzystwo Informatyczne, Poland
Анотація
Automatic extraction of synonymous collocation pairs from text corpora is a challenging task of NLP. In order to search collocations of similar meaning in English texts, we use logical-algebraic equations. These equations combine grammatical and semantic characteristics of words of substantive, attributive and verbal collocations types. With Stanford POS tagger and Stanford Universal Dependencies parser, we identify the grammatical characteristics of words. We exploit WordNet synsets to pick synonymous words of collocations. The potential synonymous word combinations found are checked for compliance with grammatical and semantic characteristics of the proposed logical-linguistic equations. Our dataset includes more than half a million Wikipedia articles from a few portals. The experiment shows that the more frequent synonymous collocations occur in texts, the more related topics of the texts might be. The precision of synonymous collocations search in our experiment has achieved the results close to other studies like ours.
Опис
Ключові слова
Бібліографічний опис
Automatic Extraction of Synonymous Collocation Pairs from a Text Corpus / N. Khairova [et al.] // Proceedings of the 2018 Federated Conference on Computer Science and Information Systems September (FedCSIS 2018), September 9-12, 2018, Poznań, Poland. Vol.15: Annals of Computer Science and Information Systems / ed. M. Ganzha, L. Maciaszek, M. Paprzycki. – Warsaw : PTI, 2018. – P. 485-488.