Please use this identifier to cite or link to this item: http://repository.kpi.kharkov.ua/handle/KhPI-Press/51259
Title: Chaotic-based particle swarm optimization algorithm for optimal PID tuning in automatic voltage regulator systems
Authors: Anwar, Naveed
Hanif, Amir
Ali, Muhammad Umair
Zafar, Amad
Keywords: proportional integral derivative (PID) tuning; robustness analysis; пропорційне регулювання інтегральної похідної; аналіз стійкості
Issue Date: 2021
Publisher: Національний технічний університет "Харківський політехнічний інститут"
Citation: Chaotic-based particle swarm optimization algorithm for optimal PID tuning in automatic voltage regulator systems / N. Anwar [et al.] // Електротехніка і Електромеханіка = Electrical engineering & Electromechanics. – 2021. – № 1. – С. 50-59.
Abstract: In an electrical power system, the output of the synchronous generators varies due to disturbances or sudden load changes. These variations in output severely affect power system stability and power quality. The synchronous generator is equipped with an automatic voltage regulator to maintain its terminal voltage at rated voltage. Several control techniques utilized to improve the response of the automatic voltage regulator system, however, proportional integral derivative (PID) controller is the most frequently used controller but itsparameters require optimization. Novelty.In this paper, the chaotic sequence based on the logistic map is hybridized with particle swarm optimization to find the optimal parameters of the PID for the automatic voltage regulator system. The logistic map chaotic sequence-based initialization and global best selection enable the algorithm to escape from local minima stagnation and improve its convergence rate resulting in best optimal parameters. Purpose.The main objective of the proposed approach is to improve the transient response of the automatic voltage regulator system by minimizing the maximum overshoot, settling time, rise time, and peak time values of the terminal voltage, and eliminating the steady-state error. Methods. In the process of parameter tuning, the Chaotic particle swarm optimization technique was run several times through the proposed hybrid objective function, which accommodates the advantages of the two most commonly used objective functions with a minimum number of iterations, and anoptimal PID gain value was found. The proposed algorithm is compared withcurrent metaheuristic algorithms including conventional particle swarm optimization, improved kidney algorithm, and others. Results. For performance evaluation, the characteristics of the integral of time multiplied squared error and Zwe-Lee Gaing objective functions are combined. Furthermore, the time-domain analysis, frequency-domain analysis,and robustness analysis are carried out to show the better performance of the proposed algorithm. The result shows that automatic voltage regulator tuned with the chaotic particle swarm optimization based PID yield improvement in overshoot, settling time, and function value of 14.41 %, 37.91 %, 1.73 % over recently proposed IKA, and 43.55 %, 44.5 %, 16.67 % over conventional particle swarm optimization algorithms. The improvement in transient response further improves the automatic voltage regulator system stability for electrical power systems.
В електроенергетичній системі потужність синхронних генераторів змінюється внаслідок збурень або різких змін навантаження. Ці зміни в потужності серйозно впливають на стабільність енергетичної системи та якість електроенергії. Синхронний генератор оснащений автоматичним регулятором напруги для підтримання напруги на його клемах на рівні номінальної напруги. Декілька методів управління використовуються для поліпшення реакції системи автоматичного регулятора напруги, однак пропорційний інтегральний похідний контролер(PID-контролер) є найбільш часто використовуваним контролером, але його параметри вимагають оптимізації. Новизна. У цій роботі хаотична послідовність, заснована на логістичній схемі, гібридизується за допомогою оптимізації рою частинок, щоб знайти оптимальні параметри PID для системи автоматичного регулятора напруги. Ініціалізація на основі хаотичної послідовності логістичної схеми та найкращий глобальний вибір дозволяють алгоритму вийти із локальної мінімальної стагнації та покращити швидкість збіжності, що дає найкращі оптимальні параметри. Мета. Основною метою запропонованого підходу є поліпшення перехідної реакції системи автоматичного регулятора напруги шляхом мінімізації максимального перевищення, часу встановлення, часу наростання та пікових значень напруги на клемах і усунення помилки у стаціонарного стані. Методи. У процесі настройки параметрів техніку оптимізації рою хаотичних частинок кілька разів пропускали через запропоновану гібридну цільову функцію, яка враховує переваги двох найбільш часто використовуваних цільових функцій з мінімальною кількістю ітерацій, і знайдено оптимальне значення коефіцієнту підсилення PID. Запропонований алгоритм порівнюється з сучасними метаевристичними алгоритмами, включаючи звичайну оптимізацію рою частинок, вдосконалений алгоритм нирок та інші. Результати. Для оцінки ефективності об'єднуються характеристики інтеграла у часі, помноженого на похибки у квадраті, та цільових функцій Цве-Лі Гейнга. Крім того, проводяться аналіз у часовій області, аналіз у частотної області та аналіз стійкості, щоб показати кращу ефективність запропонованого алгоритму. Результат показує, що автоматичний регулятор напруги, налаштований на хаотичну оптимізацію рою частинок, заснований на поліпшенні виходу PID в перевищеннях, часі налаштування та значенні функції перевищує на14,41 %, 37,91 %, 1,73 % нещодавно запропонований нирковий алгоритм та на 43,55 %, 44,5 %, 16,67 % перевищує звичайні алгоритми оптимізації рою частинок. Поліпшення перехідної реакції ще більше покращує стабільність автоматичного регулятора напруги для систем електроенергетики.
DOI: doi.org/10.20998/2074-272X.2021.1.08
URI: http://repository.kpi.kharkov.ua/handle/KhPI-Press/51259
Appears in Collections:Кафедра "Електричні апарати"

Files in This Item:
File Description SizeFormat 
EE_2021_1_Anwar_Chaotic-based.pdf577,91 kBAdobe PDFThumbnail
View/Open
Show full item record  Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.