Please use this identifier to cite or link to this item: http://repository.kpi.kharkov.ua/handle/KhPI-Press/56479
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMikhlin, Yuri V.en
dc.contributor.authorShmatko, Tatyanaen
dc.contributor.authorRudneva, Gayaneen
dc.contributor.authorGoloskubova, Natalyia S.en
dc.date.accessioned2022-04-17T23:16:50Z-
dc.date.available2022-04-17T23:16:50Z-
dc.date.issued2019-
dc.identifier.citationStability of stationary regimes in nonlinear systems: analytical and numerical approaches / Yuri V. Mikhlin [at al.] // NODYCON 2019 : book of abstr. of the 1st Nonlinear dynamics conf., February 17-20, 2019. – Rome : SUR, 2019. – [2 p.].en
dc.identifier.urihttp://repository.kpi.kharkov.ua/handle/KhPI-Press/56479-
dc.description.abstractA stability of stationary regimes in the form of nonlinear normal modes (NNMs) with rectilinear or nearrectilinear trajectories is analysed by using the Ince algebraization when a variable associated with the vibration mode is chosen as the new independent argument. In this case the variational equations are transformed to equations with singular points. Other approach is realized for NNMs with regular or chaotic behavior in time. Namely, a test which is a consequence of the well-known Lyapunov criterion of stability is used. Both approaches are also used in analysis of stability of other stationary regimes, namely, standing or traveling nonlinear waves.en
dc.language.isoen-
dc.publisherSapienza University of Romeen
dc.subjectnonlinear normal vibration modesen
dc.subjectNODYCONen
dc.subjectalgebraization by Inceen
dc.subjectGegenbauer polynomialsen
dc.subjectнелінійні нормальні режими вібраціїuk
dc.subjectалгебраїзація за Inceuk
dc.subjectполіноми Гегенбауераuk
dc.titleStability of stationary regimes in nonlinear systems: analytical and numerical approachesen
dc.typeThesisen
Appears in Collections:Кафедра "Прикладна математика"

Files in This Item:
File Description SizeFormat 
Mikhlin_Stability_of_nonlinear_2019.pdf160,29 kBAdobe PDFView/Open
Show simple item record  Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.