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Abstract
We study the dynamical behavior o f a system o f two coupled mechanical oscillators with spring pendulums and 
driven by a stick-slip induced vibrations. Each o f the oscillator consists o f the body placed onto a moving 
belt/foundation, mechanical coupling associated with the body load pressed the belt depending on the body 
movement as well as suspended spring pendulum. In addition, the influence o f the presence o f additional 
electric/electromagnetic forces acting on the pendulums are analyzed. Different kinds o f resonance behavior 
can be found in the studied system, even i f  it is simplified to a single degree-of-freedom system. As a result, due 
to many degrees-of-freedom and strong nonlinearity and discontinuity o f the considered system, novel 
nonlinear dynamical phenomena occur, both near and beyond to the resonance. The motion analysis for 
different cases is carried out by employing standard numerical methods dedicated for nonlinear systems, 
including both qualitative and quantitative methods, as well as original animations o f the system dynamics 
created in Mathematica. Understanding the role o f coupling, transition between fixed points and energy 
transition in the considered system can be potentially applied in other similar systems, especially in real 
electro-mechanical systems, power system or in structural engineering.
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Introduction

The behavior of the nonlinear and discontinuous dynamical systems is of great interest of many 
researchers. The steady-state motion of those systems is usually observed and this regime of motion is 
commonly investigated. In dynamical systems with stable and unstable fixed points it may happen 
that the unsteady or transient behavior also should be taken into account. In numerous cases, in the 
non-steady vibrations intensive energy exchange between the coupled elements of the system and 
either external source, or environment is observed. Especially, in systems with many degrees of 
freedom also energy exchange between parts of the structure or between modes may often occur. The 
mentioned phenomena are widely reported and discussed in scientific literature, for instance in 
references [1, 2, 3].

Motivated by cited references and many others, in this paper the dynamics of two coupled 
oscillators with stick-slip vibrations and spring pendulums is investigated. The proposed mechanical 
system serves as a very good example of a study of non-linear phenomena exhibited by two coupled 
mechanical oscillators. Main goal of the paper is to calculate all stable and unstable fixed points of the 
system and to investigate its dynamics. In our future work the behavior of the analysed system will be 
monitored via standard time histories, phase portraits, bifurcation diagram, Lyapunov exponents as 
well as power spectra densities in order to detect some interesting results (periodic, quasi-periodic, 
chaotic and hyper-chaotic orbits, the occurrence of multiple resonances, anti-resonance, 
synchronization effect, energy transition between oscillators, or different scenarios of transition from 
regular to chaotic motion, etc).
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1. Model of the Considered System

Figure 1 shows the model of the considered planar system of two ( i = 1,2 ) coupled mechanical 

oscillators embedded in the Earth gravitational field ( g  = 9.81m/s2 ). The distance between the 
mentioned oscillators are equal to L . The bodies with masses M i and displacements xi and y i = 0 
are laying on a belt (serving as a foundation) which is moving with a constant velocity vdr. Between 
these masses dry frictions Fjri occur which are governed by nonlinear functions of the relative 

velocities vdr -  Xi of the belt and the bodies, respectively. The mentioned masses are coupled with 
each other by a spring-damper element with coefficients k  and c , respectively. Moreover, they are 
also coupled by other spring-damper elements (with coefficients kix , cix , kiy , ciy ) with rigid bodies 

with moments of inertia and described by rotational angles 0t . These bodies can rotate about the 
pivot points, where torsional spring-damper elements ki , ci are applied. Bodies with moments of 
inertia Bt are also characterized by the lengths lx , liy and they are pressed masses M i to the belt. 

Masses M t are coupled with spring-damper pendulums which motion are governed by the angles p  
and displacements Ax,-. The above mentioned pendulums have point masses , initial lengths li0 , 
stiffness coefficients kpi and damping coefficients cpi. In addition, each mass mt is driven additional 

by forces F;- acting as a result of an electrostatic/electromagnetic interaction between the mentioned 
mass and a body placed under the belt at a distance Li .

Figure 1. Model of two coupled mechanical oscillators embedded into gravity and 
electrostatic/electromagnetic field
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Equations of motion of the considered system have the following form

i x i -  P  P ix  +  Q ix  +  F  f r i

M i y  -  N i  - M i g  -  P iy  -  Q iy

m i x  p i  - - Q ix  +  F ix

m i y p i  -  Q iy  -  m i g  +  F iy

B i d i  +  C id i +  k i d i  -  - l i y P i x -  l i x P iy

M 2 x 2 -  - P  +  P 2x +  Q 2 x  +  F fr 22 x 2 -  P  +  P 2x +  q 2x +  F f r 2 ( 1)
M  2 y  2 -  N 2 -  M  2 g  -  P 2 y  -  Q 2 y  

m 2 x p 2  - - Q 2x +  F 2x  

m 2 y  p 2  -  Q 2 y  -  m 2 g  +  F 2y  

B 2®2 +  C2@2 +  k 2@2 -  - l 2 y P 2x  -2@2 -  l 2 y P 2x l 2 xP 2y

where: P -  k ( x 2 -  xi) + c( x2 -  xi ) , Pix -  kix (liy°i + xi ) + cix (liy°i + xi ) , Piy -  kiylix°\ + ciylix°i , 

P2x -  k 2x (l2y@2 -  x 2) + c2x (l2y@2 -  x 2) , P2y -  k 2yl2x@2 + c2yl2x@2 ,
Qix -  (kpiAxi + CpiAxi ) s inWi, Qiy -  (kpiAxi + C piA x^cosW i, Q2x -  (kp 2k x 2 + Cp2k x 2) s m y 2 ,

Q2y -  ( kp2Ax2 + Cp2A x2)oos W2 , xpi -  x i + (lw + Axi)s in  Wi, yp i -  - ( l w + A xi)cos Wi,

x p2 -  x 2 + (l20 + Ax2)s in w 2 , y p2 -  - ( l20 + Ax2) cos <p2 . Moreover, Fx , F  are components of 

forces F , while F ^  are friction forces between masses M i and the moving belt.

The friction forces Ffr are equal to a scalar product of the nonlinear kinetic friction 

coefficients fdki(vdr -  x ,) -  juist l(\ + St | vdr -  x, |) with parameters St and the reaction normal forces 
N  . In our simulations the classical signum function is approximated by the continuous and smooth 
hiperbolic tangent function with numerical control parameter s  . The friction forces Ffrt strongly 

depend on the normal forces N, -  M g  + Piy + Qiy pressing the masses M t to the belt. Observe that a 

numerical simulation result yield the normal force N i > 0 , N, -  0 or N, < 0 . If N, > 0 , then the 
friction contact between the mass M i and the belt moving with velocity vdr occurs. In turn, N  < 0 

means a loss of friction contact between the mass M i and the belt. This is why in our mathematical 
model we added a discontinuous "UnitStep" function ) describing this phenomenon, being 
defined as

i  i f  N ,  >  0  

0  i f  N ,  <  0
(2)

Finally, friction forces Ffri are computed employing the following relations

1 ( M ig  + Piy + Q iy ) (3)
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In our numerical investigations we also take into account additional interactions acting on the 
point masses in the following form

F  - 5 -  I L  
F  2 11 

r  k -1
(4)

with proportionality coefficients and distances r  between the bodies. The proposed force F; can 
have both electrostatic or (electro)magnetic nature. After the appropriate transformations, the forces 
Fi can be estimated in the following way

F  =  [ F a  , F y  ]T =
( r 2 +  r 2 ) i . ^  ( r 2 +  r 2 ) i.s
V x  iy f  V x  iy f

(5)

where rx = xpi and riy = y pi + L i .

T

2. Computational Methods

Dimensional equations of motion of the considered system have been solved numerically by the 
Runge-Kutta method implemented in Mathematica software. In addition, in order to illustrate and 
understand the obtained results the appropriate animation of the system has been created in 
Mathematica software (see Fig. 2). In numerical simulations, the following parameters are fixed: 
M 1 = M 2 = 1 kg , vdr = 0.5 m /s, k  = 100 N /m , c = 10 N  • s/m , k1x = k2x = 100 N /m ,

c1x = c2x = 10 N  • s/m , k1y = k2y = 100 N /m , c1y = c2y = 10 N  • s/m , B1 = B2 = 0.1 kg • m2,

k1 = k2 = 10 N  • m /rad, c1 = c2 = 1 N  • m  • s/rad , l1x = l2x = 0.5 m , l1y = l2y = 0.5 m , m1 = m2 = 0.4 kg ,

l10 = l20 = 0.5 m , k p1 = k p2 = 100 N /m , cp1 = cp2 = 10 N  • s/m , L1 = L2 = 0.8 m , L = 2 m ,

K1 = k 2 = 1 N • m 2 , /u1st = /u2st = 0.4, fa = S2 = 3 s/m , s  = 10~4 and zero initial conditions are 
employed. The further reported numerical results are obtained for a set of different parameters. The 
obtained numerical solutions of the equations of motion presented in the dimensional form are 
directly applied for animation. However, in our further global numerical analysis (the occurrence of 
multiple resonances, anti-resonances, synchronization effect, energy transition between oscillators, 
scenarios of transition from regular to chaotic motion, bifurcation diagrams, Lyapunov exponents, 
etc.) the non-dimensional equations are taken. Moreover, our future investigations (not reported here) 
are aimed on getting an approximate asymptotic solution of the non-steady state motion of the 
considered system using the multiple time scale method [1,3].

Figure 2. Frame of animation of the considered system presented with the help of Mathematica software 
(the dashed curves represent spring-damper elements)

103



Dariusz Grzelczyk, Jan Awrejcewicz

3. Numerical Results

First, all stable and unstable fixed points of the considered system are calculated. In the case of 
= f^ist = 0 and k x = k 2 = 0 the analysed system possesses the following four fixed points:

(1) :  x  = 0 , x i  = 0 , A x  = - m xg / k p l , A ^  = - m i g / k p i , 0  = 0 ,0 2  =  0 ,q \  = n ,V i  = n ,  

( i ) :  xi =  0 , x i  = 0 , Axi = - m i  g / k p i , A x i  = m i g / k p i , 0  = 0 , 0  = 0 ,q \  = n , V i  = 0 , 

(3 ): xi =  0 ,x 2 =  0, Axi =  m ig / k p i , Ax2 =  - m i g / k p i , 0 i = 0 ,0 i  =  0 , ^  =  0 , ^ i  = n ,  (6)

(4 ) :  x i =  0 ,x 2 =  0, Axi =  m ig / k p i , A x 2 = m i g / k p i ,0 i =  0 ,0 i  =  0 , ^  =  0 , ^ i  =  0,

and the appropriate system configurations are shown in Fig. 3. In turn, for values of system 
parameters introduced in Section 2 but without friction forces ( fjist = juist = 0 ), the system has eight 
fixed points (obtained numerically). Configurations of the system for the mentioned eight fixed points 
are presented in Fig. 4.

n
:) ! I o  o o  o ZD QZ ‘ ! C

Figure 3. System configurations and the fixed points ( juist = /uist = 0, Ki = k2 = 0 )

a . c r cr X)

Qz: □  
P  Q—

□ 
D  Q Z

□  □cr r □
\ D

Figure 4. System configurations and the fixed points ( fj.ist = n ist = 0, Ki = k2 = i N • m )

In the first case we have a situation of classical simple or inverted gravity pendulums (a stable 
equilibrium position of the simple pendulum and unstable equilibrium position of the inverted 
pendulum). In turn, in the cases of configurations of the system presented in Fig. 4, both simple or 
inverted pendulums in vertical positions are located in unstable positions. Between the mentioned 
unstable fixed points there are also fixed stable points.

In Figures 5-13 some chosen time histories of angles q>t (t) and trajectories of the point 
masses mi are reported (values of the appropriate quantities are presented in SI units). Figures 5-8 
illustrate different scenarios of transition of the system from initial conditions to stable fixed points. In 
the cases reported in Figs. 5 and 7, point masses mt move from initial conditions to a near first 
unstable point (simple hanging pendulums placed in vertical positions), and finally reaching the first 
stable position. In the cases illustrated in Figs. 6 and 8, pendulums move from initial conditions, and 
oscillate near all stable and unstable fixed points, being finally attracted by one of the stable position.

The results reported in Figs. 9-10 show sensitivity of the considered system with respect to 
the parameters ki, k2 responsible for additional forces acting on the spring pendulums. Even a small 
change of these parameters push the considered pendulums to move from the initial conditions to the 
different fixed points.

jnstable jnstable unstable jnstable

jnstable jnstable unstable nstable
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P,M fcM

Xp̂t)

Figure 5. Time histories of angles cpi(t) and trajectories of the masses (for initial parameters of the
system)

f,(t) R(t)
fit) ypi(0 yp̂ t)

<PXt)

Figure 6. Time histories of angles cpi(t) and trajectories of the masses mt ( mj = m2 = 0.1 kg ) 

»,(t) fc(t)

-  t y p ^ i)10 20  30 40 yrAi)

Figure 7. Time histories of angles cpi(t) and trajectories of the masses mt ( k = 0, c = 0 ) 

*,(t) fcW
yp, 0

Figure 8. Time histories of angles cpi(t) and trajectories of the masses mt 
( m1 = m2 = 0.1 kg , k = 0 , c = 0 )
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Figure 9. Trajectories of the masses ( k 1 = k 2 = 0.35 N • m2 )
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Figure 10. Trajectories of the masses m t ( k 1 = k 2 = 0.36 N • m )

Figures 11-14 show time histories of angles q>t (t) for m1 = m2 = 0.1 k g , 

K = k 2 = 0.35 N  • m 2 and different velocities vdr of the belt. As can be seen, at the beginning spring 
pendulums oscillate in phase, after some time they oscillate in anti-phase, and this process vary in a 
periodic manner. This process is related to the energy exchange between the oscillators (pendulums). 
Movements of the individual pendulums can be regular or irregular, depending on the stick-slip 
vibrations occurring in the considered system.

?>i(t) fc (t)

<Pi(

0 .5 0

0 .4 8

0 .4 6

0 .4 4

0 .4 2

Figure 11. Time histories of angles (t) for Vdr = 0.01 m/s

<Mt) fc (t) <Pi(t) ^ ( t )

►  t

Figure 12. Time histories of angles (t) for Vdr = 0.05 m/s
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Figure 13. Time histories of angles q>t (t) for vdr = 0.1 m/s

Conclusions

In the paper dynamics of two coupled mechanical oscillators with spring pendulums and driven 
by a stick-slip induced vibrations are investigated. First, stable and unstable fixed points of the system 
are calculated analytically and numerically. Next, dynamical behaviours near fixed points are 
illustrated and discussed. Due to mathematical complexity (many degrees of freedom and 
discontinuities of equations of motion) the considered system is investigated numerically with a help 
of the Mathematical software. Numerical calculations are performed for certain set o f parameters and 
initial conditions. As a result, a few nonlinear phenomena occurring for a narrow range of the 
parameters may be not detected. Analytical approach allows to obtain the solution as a function of 
some chosen parameters which gives the opportunity to discuss the results for full spectrum of the 
system parameters. However, the exact analytical or semi-analytical solution cannot be obtained due 
to nonlinearity, discontinuity and couplings in the equations of motion of the considered system. Our 
further research will be focused on analytical and/or numerical analysis o f the considered system in 
the non-dimensional form, including resonance and synchronization effects, energy transition between 
oscillators, different scenarios of transition from regular to chaotic motion, bifurcation diagrams, 
Lyapunov exponents, power spectra densities, etc.).
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