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1. Introduction

The solution of the problem of improving special working
properties, reliability and durability of functional elements,
devices and machines can be achieved by targeted modi-
fying the shape, structure and surface properties (or, more
precisely, near-subsurface layer). This is the basis for the
development of priority scientific practical direction in mod-
ern materials science — surface engineering [1]. Surface engi-
neering combines methods of directed change in the physical
and chemical properties of the surface layers of materials by
deformation [2], modification [3], deposition of single-lay-
ered [4], multi-period [5], multi-element [6] coatings and
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protective layers by different combined methods [7]. Inno-
vative character of the surface engineering development is
determined by the fact that the main quality indicators of
machines are reliability and performance efficiency. These
parameters are mainly determined by the properties of the
surface layers of parts and joints (endurance limit, corrosion
resistance, wear resistance, coefficient of friction, contact
stiffness, fit strength, tightness of joints, etc.) [8]. This can
be achieve d by modifying the surface with high-perfor-
mance methods. Surface modification is especially relevant
for the lightweight materials (mainly based on aluminium,
magnesium and titanium). The effectiveness of their use at
present is very high not only in the traditional aerospace and




automotive engineering and instrument making, but also
for biomedical industry, which critically needs the creation
of lightweight alloys with controlled (required) corrosion
rate. Thus, surface condition of these alloys defines a set of
functional characteristics, which adds prominence to the de-
velopment of new efficient technologies for the surface mod-
ification of structure and properties of lightweight materials.

2. Literature review and problem statement

Each stop of a machine due to the damage of separate
parts or reduction in technical characteristics below the
permissible level typically entails great economic loss, and
in some cases (particularly, in the case of biomedical appli-
cation) leads to disastrous consequences. This makes it rel-
evant (and in some cases critically required) to improve the
operational properties of surface layers based on the method
of structural engineering. The structural surface engineering
is especially in demand for the material of parts that operate
under conditions of friction, for which the decisive factor that
determines durability is high wear resistance, which largely
depends on the hardness of the surface [9]. In this case, the
core of such parts in order to ensure high structural strength
requires much lower hardness but higher indicators of plastici-
ty and viscosity. Thus, in the parts that work under conditions
of friction, different properties of the surface and the core
should be provided, which can be achieved by different types
of treatment [10] or by applying composite coatings [11].

In recent years, new methods of the formation of coatings
[12] and the strengthening of surface by using highly concen-
trated energy sources have been developed intensively [13].
One of the most promising modern methods of highly concen-
trated treatment is the method of microarc oxidation (MAO),
which allows obtaining high-density functional coatings on
the valve metals [14], in particular protective [15].

Microarc oxidation is a complex process of obtaining the
coatings on the surface of material, that is, a working elec-
trode placed in the electrolyte, under the mode of microarc
discharges that move at its surface [16].

The method of microarc oxidation has significant ad-
vantages over the method, which is widely used in industry,
alloy anodizing treatment:

1) it does not require, as a rule, thorough preliminary
preparation of metal surface of articles or structures;

2) it allows obtaining the coatings characterized by high
hardness, wear resistance, corrosion protective properties,
adhesion to metal base;

3) it provides the possibility to achieve the condition,
optimal for friction, with improved surface hardness and
plastic core [17].

The largest effect when using the MAO method had been
up to now achieved in the treatment of titanium [18] and alu-
minum [19] as the metals of valve group (they possess a uni-
polar conductivity in the system metal — oxide — electrolyte).

Among the metallic materials employed in various sec-
tors of modern industry, magnesium alloys are of special
interest. It is due to their special properties. First, it is a rel-
atively low density (1.35-1.85 g/cm?, which is 1.5-2 times
less than that of aluminum alloys and 4—5 times less than
that of steel), good mechanical, structural and operational
properties in the temperature range from —273 to +350 °C,
good machinability and high ability to absorb the energy of
impact and reduce vibration.

These properties form the basis for a widespread use of
magnesium alloys both in mechanical engineering and in-
strument making and especially in the biomedical industry,
since, in addition to the above advantages, magnesium is
nontoxic, biologically and mechanically compatible with the
bone and muscle tissues [20].

The main reason that limits the scope of application
of alloys based on magnesium is their low wear resistance,
primarily due to the high chemical reactivity of magnesium
and, as a consequence, low resistance to corrosion destruc-
tion. Since the corrosion and wear are surface phenomena,
then the methods of surface engineering are used to improve
the properties. The most common method of surface en-
gineering for the protection from corrosion of magnesium
alloys is the application of inorganic coatings in combination
with paints, organic and metallic coatings. At present, how-
ever, the problem of improving corrosion resistance can be
solved by more productive and efficient methods.

For these purposes, it is promising to apply the method
of microarc oxidation, due to which it is possible to conduct
at the surface of products made of magnesium alloys the syn-
thesis of nanoceramic layers that demonstrate high strength
of adhesion with the base and controlled corrosion-protec-
tive capacity [21].

However, the MAO method for magnesium alloys has
a significant drawback: the need for a long-term empirical
search for the optimal composition of electrolyte for each
magnesium alloy [22]. This shortcoming is related to the
lack of targeted comparative studies on the kinetics of
growth of coatings and the composition, generated in them,
at the surface of magnesium alloys different by their compo-
sition [23]. It is obvious that the solution to this problem may
be found in the systematic research into the optimization of
selecting the electrolyte and the modes of magnesium alloys
treatment that provide high adhesion strength and surface
hardness.

3. The aim and tasks of the study

The aim of present study is to examine regularities in
the formation of MAO-coatings, to search for effective for-
mulations of electrolytes and electrolysis modes to form the
coatings with high protective properties based on Mg-alloys.

To achieve this goal, the following tasks had to be solved:

— to compare the effect of alkaline electrolytes, electro-
lytes based on the solutions of silicates and multicomponent
composite electrolytes on the stability of the processes for
determining the conditions for a stable progress of the MAO
process on magnesium alloys;

—to establish the impact of treatment on the created
phase composition and surface hardness;

— to determine adhesion resistance of the created coating
to the material of the base;

— to explain the effect of phase composition on the pro-
tective properties of coatings.

4. Materials and methods for obtaining and examining the
coatings fabricated by the MAO treatment

Casting magnesium alloy (Mg — 9% Al — 0.7 % Zn —
0.3% Mn) was exposed to the microarc treatment. The
treatment was carried out under the anode-cathode mode in



the installation with power supply of the capacitor type in
the alkaline electrolyte, with the addition of inorganic com-
pounds. Duration of treatment varied from 5 to 120 minutes
at current density 20-40 A/dm?.

The phase composition of coating was estimated
by the diffractograms obtained on the diffractometer
DRON-3 (Burevestnik, Russia) at radiation K,—Cu.
Images were taken under a point to point mode at

coating after cross notch (10x10 lines) that cuts it through
at step of 1 mm [14]. The results showed that in either case,
both in its original state and after immersion in water for
240 hours, no area (1x1 mm) was cleaned.

Table 1

Composition of the used electrolytes, phase composition and

hardness of the coatings
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liquid glass) transfers the process directly into the mode of
arc discharges of large capacity sufficient to melt the surface
and form large craters.

The MAO process under the mode of microarc discharg-
es is steadily implemented in the multi-component elec-
trolytes that contain solutions of alkali (KOH or NaOH),
sodium silicate Na;SiO3, sodium aluminate NaAlO», sodium
hexametaphosphate NasP301,.

Table 1 shows compositions of the used electrolytes, in
which coatings of thickness up to 300 pm form under the mode
of microarc discharges at current density of 20—40 A /dm?.

Using data on the X-ray diffraction analysis (Fig. 1), it is
found that the main phases are MgO, MgAl,O4, Mg,SiOy,
Mgs(POy)s, the presence of which in a coating is deter-
mined by electrolyte composition and electrolysis parame-
ters (Table 1). In this case, the hardness of coatings is 2000—
6600 MPa, which is 3—10 times higher than the hardness
of the base (HV=600 MPa). With the increased content of
spinel of MgAl,Oy, the hardness increases.

Thus, electrolysis in the resulting electrolytes transforms
the surface layer of magnesium alloy into a ceramic coating,
consisting of crystalline oxides, spinels and magnesium salts.

Microplasma treatment provides high adhesion between
a coating and a base. This is evidenced by the studies ad-
hesion, conducted by tearing the self-adhesive tape off the

Fig. 1. Fragments of diffractograms (K,—Cu) of
MAO-coatings: 1 — electrolyte No 1, 2 — electrolyte No 2,
3 — electrolyte No 3, 4 — electrolyte No 4

Corrosion tests in salt spray comprised measuring the
maximum width of corrosion along the section line on samples
with X-shaped slit in the coating. The corrosion cycle includ-
ed irrigation (1 hour) and drying (1 hour) for two months. The
results showed that in the case of alloy (Mg — 9 % Al — 0.7 %
Zn — 0.3 % Mn), the signs of corrosion were not detected
(width of corrosion < 0.5 mm) in electrolytes No. 3 and
No. 4; 1-5 mm in electrolytes No. 1 and No. 2. The drop meth-
od yielded similar results — maximum corrosion resistance is
demonstrated by coatings in electrolytes No. 3 and No. 4.

6. Discussion of results of examining the structure and
properties of MAO modified surface

An analysis of the obtained results revealed that the pro-
tective properties of a coating depend on its phase structure.
Thus, the existence in the coating of spinel of MgAl,O, along
with MgO increases protective properties of the coating
(Fig. 2). This result can be explained by the fact that the pres-



ence of spinel in the coating increases specific volume of coat-
ing relative to the base (ratio of the specific amount of MgO
and the volume of MgAl,Oy spinel to the volume of Mg is 0.79
and 2.83, respectively). An increase in the specific volume of
coating in relation to the base predetermines the occurrence
of compressive stresses in the coating and consequently con-
tributes to the formation of the more solid oxide films.

In order to increase anti-corrosive properties of MAO-
coatings on magnesium alloys, it is necessary to increase the
spinel content in a coating, which is achieved by the intro-
duction of inorganic additives that contain aluminum into
electrolyte. Thus, the MAO-technology can be successfully
employed to improve corrosion resistance and surface hard-
ness of magnesium alloys.
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Fig. 2. Effect of magnesium aluminate on the resistance
properties of MAO-coating (width of coating h=50 um,
electrolyte No. 3)

It should also be noted that the morphology of the coat-
ing surface (Fig. 3) is characterized by high development
(R,=5-15 at the thickness of coating h=50 pm).

Such a large development of the surface allows using the
MAO-coating as a sub-layer for additional improvement of
corrosion resistance by applying other protective coatings
(paints, varnishes, polymers, etc.), providing their good
adhesion at that.

Thus, the conducted study allowed us to demonstrate
the feasibility of employing the MAO-technology to form
protective coatings on the casting magnesium alloys. Specif-
ic recommendations are given regarding the parameters of
electrolysis, which provide enhancement of corrosion resis-
tance in MAO-coatings.

Results of the research might be used for strengthening
and improving the protective properties of parts in the mo-

tors of brake drums, brackets, housings and other articles
made of casting magnesium alloys.

In the future, we plan to conduct similar studies on de-
formable magnesium alloys of various chemical compositions.

Fig. 3. Morphology of the surface of MAO-coating on
magnesium alloy (h=50 um)

7. Conclusions

1.1t is established that multi-component electrolytes
containing solutions of NaOH alkali, sodium aluminate
NaAlO,, sodium hexametaphosphate NasP3Oqgare the most
effective ones. The use of these electrolytes makes it possible
for the process of microarc oxidation to proceed steadily
under the mode of microarc discharges.

2. It is revealed that the main phases are MgO, MgAl,Oy,
Mg3(POy)s, the content of which in a coating is defined
by the electrolyte composition and the parameters of elec-
trolysis. Hardness of coatings is 2000—6600 MPa, which
is 3-10 times higher than the hardness of the base (HV=
~600 MPa).

3. It is established that microplasma treatment provides
high adhesion between coating and the base, as evidenced
by the studies on adhesion, conducted by tearing off the
self-adhesive tape.

4. 1t is shown that the presence of MgAl,Oy spinel in a
coating, along with MgO, increases protective properties of
the coating, which is due to the increased specific volume of
the coating during formation of the spinel, the occurrence of
compressive stresses at that and, consequently, the formation
of thicker coatings.
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