Військовий інститут танкових військ НТУ "ХПІ"
Постійне посилання на фонд
Начальник інституту
Серпухов Олександр Васильович
Склад інституту
1. Факультет озброєння і військової техніки;
2. Факультет радіаційного, хімічного, біологічного захисту та екологічної безпеки;
3. Кафедра фізичного виховання спеціальної фізичної підготовки і спорту;
4. Кафедра військової підготовки офіцерів запасу;
5. Батальйон забезпечення навчального процесу.
Переглянути
Перегляд Військовий інститут танкових військ НТУ "ХПІ" за Автор "Cherniavskyi, I. Yu."
Зараз показуємо 1 - 3 з 3
Результатів на сторінці
Налаштування сортування
Документ Expert-analytical forecasting of nuclear damage foci on the monitoring issues of military character emergency situations(НТУ "ХПІ", 2018) Pisnia, Leonid; Cherniavskyi, I. Yu.; Petrukhin, Sergey; Serikova, ElenaPaper treats the issue concerning with complex assessment of nuclear damage possible foci in emergency situations of the military character. The aim is to specify the "necessary and sufficient" parameters of nuclear explosion and to assess their contribution to identification tasks of nuclear damage foci, to identify their features and boundaries, to assess the gamma-neutron exposure doses of the population, and effectively distribute forces and facilities for actions in nuclear foci. The assessing process of nuclear damage foci has been proposed in the three tasks form by the criteria: type of nuclear explosion, trotyl equivalent and ammunition type, to represent a complex expert-analytical assessment of the nuclear explosion damage factors.Документ Increasing the resolving power of determining the point gamma-radiation source direction in the precision method(STC "Institute for Single Crystals", 2017) Grigoryev, A. N.; Bilyk, Z. V.; Litvinov, Yu. V.; Polyansky, N. E.; Sakun, A. V.; Marushchenko, V. V.; Cherniavskyi, I. Yu.; Voronkin, E. F.; Petrukhin, S. Yu.; Kasian, S. V.Experiments have demonstrated the possibility of increasing the resolving power of determining the point gamma-radiation source direction in the precision method. The work involved reducing the step of the angle of rotation of an asymmetric absorber and shifting the detector relative to the maximum-minimum absorber thickness boundary. The 137Cs gamma-radiation source direction was determined within the angles of the maximum and minimum thickness boundaries of the asymmetric absorber. The detector position was investigated for the maximum thickness of the asymmetric absorber on the boundary between the maximum and minimum thickness, and for the minimum thickness. The optimal position of the detector was found for the asymmetric absorber boundary, enabling to determine the maximum count rate in the gamma source direction. A specific position of the detector enables observing an increasing gamma radiation scattering over the copperlead surface. The experiment used absorbers with spectrometric telluride-cadmium detectors. Information from the detectors was output to four multichannel gamma-radiation impulse analysers, which operated simultaneously in the spectrometer mode.Документ Physico-mathematical model for determining the direction in space to point sources of gamma radiation using spherical absorber(STC "Institute for Single Crystals", 2018) Grigoryev, A. N.; Bilyk, Z. V.; Pettersson, I.; Litvinov, Yu. V.; Polyansky, N. E.; Sakun, A. V.; Marushchenko, V. V.; Cherniavskyi, I. Yu.; Voronkin, E. F.; Sosnutska, O. O.; Petrukhin, S. Yu.; Indykov, S. N.; Haydabuka, V. E.Physico-mathematical model for determining the direction in space to point sources of gamma radiation using a spherical absorber was developed. CdTe detectors of appropriate sizes are placed in the regular pyramid tops under absorber. The physico-mathematical model allowed, taking into account the exponential attenuation of gamma radiation by the absorber, to find the distance from the location of any CdTe sensor to the surface of sphere in any direction in space. Calculated information and signal received from the detectors, correlate to each other. The ratios found depend on the angle to the source of gamma radiation and represent the ratio of transmittance coefficients for four sensors. A methodology for locating the developed device in space, which allowed to obtain dependence of the calculated ratios from the angle in space for θ = 90° and φ from 0 to 360° in increments of 15° was proposed. Each direction in space corresponds to a set of six respective ratios.