2022 № 4 Електротехніка і Електромеханіка
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/65916
Переглянути
Документ Measurement and analysis of common and differential modes conducted emissions generated by an AC/DC converter(Національний технічний університет "Харківський політехнічний інститут", 2022) Zeghoudi, Abdelhakim ; Slimani, Helima; Bendaoud, Abdelber; Benazza, Baghdadi ; Bechekir, Seyfeddine; Miloudi, HoucineRectifiers are the most important converters in a very wide field: the transport of electrical energy in direct current and in the applications of direct current motors. In most electrical and electronic systems, rectifiers are non-linear loads made up of diodes, therefore they are a source of harmonic pollution at a base frequency with a distorting line current signal that generates electromagnetic interference. There are two disturbance modes: common mode and differential mode. These disturbances caused by the rapid variation of current and voltage as a function of time due to the switching of active components, passive components such as inductors, capacitors, coupling, etc. The purpose of this work is to study the conducted emissions generated by a rectifier connected to the Line Impedance Stabilizing Network in an electric circuit. The determination of these disturbances is done for firstly both common and differential modes at high frequency, and secondly harmonics current, line current at low frequency. The novelty of the proposed work consists in presenting a study of disturbance generated by rectifiers using simulation and also experimental measurements at low and high frequencies in order to compare the results. Methods. For the study of the disturbances conducted by the diode bridge converter (rectifier), the sources of conducted electromagnetic disturbances were presented in the first time. Then, the common and differential modes were defined. This converter was studied by LTspice Software for simulation and also experimental measurements at low frequency for harmonics current and high frequencies for disturbances in common and differential modes. Results. All the simulations were performed using the LTspice software and the results obtained are validated by experimental measurements performed in the APELEC laboratory at the University of Sidi Bel-Abbes in Algeria. The obtained results of conducted emissions at high frequency and total harmonics distortion of current at low frequency are compared between simulation and experiment.Документ Simulation of electromagnetic processes in the grounding system with a short circuit in the operating high-voltage substation(Національний технічний університет "Харківський політехнічний інститут", 2022) Koliushko, D. G.; Rudenko, S. S.; Istomin, O. Ye.; Saliba, A. N.The aim of the work is a test of the developed mathematical model of electromagnetic processes of short circuit and approbation of the created software complex «LiGro» on its basis for the existing grounding system located in three-layer soil. Methodology. To improve the accuracy of calculating the normalized parameters of operating power stations and substations, the authors developed the «LiGro» software package based on the expressions obtained in for calculating the potential of the electric field of a nonequipotential grounding system (GS). To monitor the state and assess the efficiency of the GS of operating power facilities, the electromagnetic diagnostics is used. The topology of the GS was determined with the induction method by complex KNTR-1, the geoelectric structure of the soil was determined by the method of vertical electrical sounding using the Wenner installation, the interpretation of the sounding results was made by the «VEZ-4A» program. The calculation results show that for the selected substation, the model developed in the «LiGro» complex has a deviation δ2 from the experimental values Ut by an average of 8,2 %, and the model implemented in Grounding 1.0 (IEEE model) δ1 is 17,2 %. Originality. The results of the study confirm the adequacy of the developed GS model in the «LiGro» complex based on a three-layer soil model, with the experimental values of the touch voltage obtained by simulating a single-phase ground fault on a real GS in operation. The first time was made approbation of the «LiGro» software package when performing the EMD of the GS of an operating substation with a voltage class of 150 kV. Practical significance. The program software can be used by special measuring’s laboratory to determining electrical safety parameters: touch voltage, GS voltage, and GS resistance.Документ Comparative study of 220 kV overhead transmission lines models subjected to lightning strike simulation by using electromagnetic and alternative transients program(Національний технічний університет "Харківський політехнічний інститут", 2022) Boumous, Samira; Boumous, Zouhir; Anane, Zahira ; Nouri, HamouIn high voltage networks intended for the transport of electrical energy, lightning can strike an electric line striking either a phase conductor, a pylon or a ground wire, causing significant overvoltage on the transmission lines classified as stresses the most dangerous for transformer stations and electro-energy systems in general. Modeling transmission lines becomes more complicated, if the frequency dependence of resistance and serial inductance due to the effect of lightning strike in the conductors and in the earth is considered. The difficulty increases the fact that the parameters of the line can be defined and calculated only in the frequency domain, while the simulation of transients is wanted to be in the time domain. Problem. Several models (J.R. Marti, Bergeron, nominal PI, Semlyen and Noda) exist for the modeling of transmission lines, the Electromagnetic Transients Program/Alternative Transient Program software (EMTP/ATPDraw) gives the possibility to choose between these models which is delicate due to the fact that we do not have experimental results to validate and justify the choice among the models available in the software. In this context, practical value: the overhead transport line OAT-El Hassi (220 kV) of the city of Sétif located in the north east of Algeria is used for the modeling of lightning strike by using the EMTP/ATPDraw software. Originality. A comparative study of the investigation of a lightning strike on an existing high voltage transmission line by different models of existing lines in the EMTP/ATPDraw software library of this software. Results. It was concluded that the choice of the model of the line is very important given the accuracy and quality of the curves of the voltage presented at the different calculation points.Документ A comparative study of maximum power point tracking techniques for a photovoltaic grid-connected system(Національний технічний університет "Харківський політехнічний інститут", 2022) Louarem, Sabah; Kebbab, Fatima Zohra; Salhi, Houria; Nouri, HamouIn recent years, the photovoltaic systems (PV) become popular due to several advantages among the renewable energy. Tracking maximum power point in PV systems is an important task and represents a challenging issue to increase their efficiency. Many different maximum power point tracking (MPPT) control methods have been proposed to adjust the peak power output and improve the generating efficiency of the PV system connected to the grid. Methods. This paper presents a Beta technique based MPPT controller to effectively track maximum power under all weather conditions. The effectiveness of this algorithm based MPPT is supplemented by a comparative study with incremental conductance (INC), particle swarm optimization (PSO), and fuzzy logic control (FLC). Results Faster MPPT, lower computational burden, and higher efficiency are the key contributions of the Beta based MPPT technique than the other three techniques.Документ Determination of the input filter parameters of the active rectifier with a fixed modulation frequency(Національний технічний університет "Харківський політехнічний інститут", 2022) Krylov, D. S.; Kholod, O. I.Development of a methodology for calculating the parameters of the active rectifier-voltage source input filter operating with a fixed modulation frequency to ensure electromagnetic compatibility with the supply network acceptable by standards at minimum values of the input inductance and checking its main characteristics on a mathematical model. Methodology. The authors have developed a methodology for calculating the parameters of the input filter of an active rectifier-voltage source. The calculation results are verified on the constructed mathematical model of a frequency converter, the scheme of which is an active rectifier and an autonomous voltage inverter. A series of experiments was carried out on a mathematical model to study the dependence of the total harmonic distortion of current and mains voltage on the value of the input inductance for various parameters of the input filter. Results. The structure and calculation procedure the input filter of an active rectifier operating with a fixed modulation frequency are proposed. The simulation results showed that the inclusion of a filter at the input of the active rectifier significantly improves its electromagnetic compatibility with the supply network in the entire range of variation of the input inductance of the circuit and makes it possible to achieve the values of the total harmonic distortion permissible by the norms. Originality. A structure and a calculation procedure the input filter of an active rectifier-voltage source operating with a fixed modulation frequency are proposed. Practical significance. The dependencies obtained in the article allow us to evaluate the relationship between the parameters of the filter elements and its characteristics among themselves and come to a compromise between them when designing a scheme for specific technical conditions.Документ The method of multi objective synthesis of nonlinear robust control by multimass electromechanical systems(Національний технічний університет "Харківський політехнічний інститут", 2022) Kuznetsov, B. I.; Nikitina, T. B.; Bovdui, I. V.; Voloshko, O. V.; Kolomiets, V. V.; Kobilyanskiy, B. B.Development of the method of multi objective synthesis of nonlinear robust control by multimass electromechanical systems to satisfy various requirements for the operation of multi-mass systems in various modes. Methodology. The problem of multi objective synthesis of nonlinear robust control of multimass electromechanical systems is formulated and the possibility of satisfying various requirements for the operation of such systems in various modes based on the concept of functionally multiple membership of the state vector and the solution of the Hamilton-Jacobi-Isaacs equation is shown. A method for choosing weight matrices with the help the vector of purpose of nonlinear robust control is formed by solving a zero-sum vector antagonistic game has been substantiated and developed. Results. The results multi objective synthesis of nonlinear robust two-mass electromechanical servo systems in which differences requirements for the operation of such systems in various modes were satisfied are given. Based on the results of modeling and experimental studies it is established, that with the help of synthesized robust nonlinear controllers, it is possible to improve of quality indicators of two-mass electromechanical servo system in comparison with the system with standard regulators. Originality. For the first time the method of multi objective synthesis of nonlinear robust control by multimass electromechanical systems to satisfy various requirements for the operation of multimass systems in various modes is developed. Practical value. From the point of view of the practical implementation the possibility of solving the problem of multi objective synthesis of nonlinear robust control systems to satisfy various requirements for the operation of multimass electromechanical systems in various modes is shown.Документ Multi-objective optimal power flow based gray wolf optimization method(Національний технічний університет "Харківський політехнічний інститут", 2022) Mezhoud, Nabil ; Ayachi, Bilel ; Amarouayache, MohamedOne of predominant problems in energy systems is the economic operation of electric energy generating systems. In this paper, one a new evolutionary optimization approach, based on the behavior of meta-heuristic called grey wolf optimization is applied to solve the single and multi-objective optimal power flow and emission index problems. Problem. The optimal power flow are non-linear and non-convex very constrained optimization problems. Goal is to minimize an objective function necessary for a best balance between the energy production and its consumption, which is presented as a nonlinear function, taking into account of the equality and inequality constraints. Methodology. The grey wolf optimization algorithm is a nature inspired comprehensive optimization method, used to determine the optimal values of the continuous and discrete control variables. Practical value. The effectiveness and robustness of the proposed method have been examined and tested on the standard IEEE 30-bus test system with multi-objective optimization problem. The results of proposed method have been compared and validated with hose known references published recently. Originality. The results are promising and show the effectiveness and robustness of proposed approach.Документ Design of LLC resonant converter with silicon carbide MOSFET switches and nonlinear adaptive sliding controller for brushless DC motor system(Національний технічний університет "Харківський політехнічний інститут", 2022) Merlin Suba, G.; Kumaresan, M.The high voltage gain DC-DC converters are increasingly used in many power electronics application systems, due to their benefits of increased voltage output, reduced noise contents, uninterrupted power supply, and ensured system reliability. Most of the existing works are highly concentrated on developing the high voltage DC-DC converter and controller topologies for goal improving the steady state response of brushless DC motor driving system and also obtain the regulated voltage with increased power density and reduced harmonics, the LLC resonant DC-DC converter is implemented with the silicon carbide MOSFET switching devices Problem. Yet, it facing the major problems of increased switching loss, conduction loss, error outputs, time consumption, and reduced efficiency. Also the existing works are mainly concentrating on improving the voltage gain, regulation, and operating performance of the power system with reduced loss of factors by using the different types of converters and controlling techniques. The goal of this work is to obtain the improved voltage gain output with reduced loss factors and harmonic distortions. Method. Because, this type of converter has the ability to generate the high gain DC output voltage fed to the brushless DC motor with reduced harmonics and loss factors. Also, the nonlinear adaptive sliding controller is implemented to generate the controlling pulses for triggering the switching components properly. For this operation, the best gain parameters are selected based on the duty cycle, feedback DC voltage and current, and gain of silicon carbide MOSFET. By using this, the controlling signals are generated and given to the converter, which helps to control the brushless DC motor with steady state error. Practical value. The simulation results of the proposed LLC silicon carbide MOSFET incorporated with nonlinear adaptive sliding controller controlling scheme are validated and compared by using various evaluation indicators.Документ Performance improvement of shunt active power filter based on indirect control with a new robust phase-locked loop(Національний технічний університет "Харківський політехнічний інститут", 2022) Chemidi, Abdelkarim; Benhabib, Mohamed Choukri; Bourouis, Mohammed el aminSince the development of the first active power filter (APF) in 1976, many efforts have been focused on improving the performances of the APF control as the number of different nonlinear loads has continued to increase. These nonlinear loads have led to the generation of different types of current harmonics, which requires more advanced controls, including robustness, to get an admissible total harmonic distortion (THD) in the power system. Purpose. The purpose of this paper is to develop a robust phase-locked loop (PLL) based on particle swarm optimization-reference signal tracking (PSO-RST) controller for a three phase three wires shunt active power filter control. Methodology. A robust PLL based on PSO-RST controller insert into the indirect d-q control of a shunt active power filter was developed. Results. Simulation results performed under the MATLAB/SimPowerSystem environment show a higher filtering quality and a better robustness compared to the classical d-q controls. Originality. Conventional PLLs have difficulty determining the phase angle of the utility voltage sources when grid voltage is distorted. If this phase angle is incorrectly determined, this leads to a malfunction of the complete control of the active power filters. This implies a bad compensation of the current harmonics generated by the nonlinear loads. To solve this problem we propose a robust and simple PLL based on PSO-RST controller to eliminate the influence of the voltage harmonics. Practical value. The proposed solution can be used to improve the functioning of the shunt active power filter and to reduce the amount of memory implementation.Документ Improvement of power quality in grid-connected hybrid system with power monitoring and control based on internet of things approach(Національний технічний університет "Харківський політехнічний інститут", 2022) Balakishan, Padakanti ; Chidambaram, Ilanji Akilandam; Manikandan, ManiThis article proposes a new control monitoring grid connected hybrid system. The proposed system, improvement of power quality is achieved with internet of things power monitoring approach in solar photovoltaic grid system network. The novelty of the proposed work consists in presenting solar power monitoring and power control based internet of things algorithm, to generate DC voltage and maintain the constant voltage for grid connected hybrid system. Methods. The proposed algorithm which provides sophisticated and cost-effective solution for measuring the fault and as maximum power point tracking assures controlled output and supports the extraction of complete power from the photovoltaic panel. The objective of the work is to monitor and control the grid statistics for reliable and efficient delivery of power to a hybrid power generation system. Internet of things is regarded as a network comprising of electronic embedded devices, physical objects, network connections, and sensors enabling the sensing, analysis, and exchange of data. The proposed control technique strategy is validated using MATLAB/Simulink software and real time implementation to analysis the working performances. Results. The results obtained show that the power quality issue, the proposed system to overcome through monitoring of fault solar panel and improving of power quality. The obtained output from the hybrid system is fed to the grid through a 3ϕ voltage source inverter is more reliable and maintained power quality. The power obtained from the entire hybrid setup is measured by the sensor present in the internet of things-based module. In addition to that, the photovoltaic voltage is improved by a boost converter and optimum reliability is obtained with the adoption of the perturb & observe approach. The challenges in the integration of internet of things – smart grid must be overcome for the network to function efficiently. Originality. Compensation of power quality issues, grid stability and harmonic reduction in distribution network by using photovoltaic based internet of things approach is utilized along with sensor controller. Practical value. The work concerns a network comprising of electronic embedded devices, physical objects, network connections, and sensors enabling the sensing, analysis, and exchange of data. In this paper, internet of things sensors are installed in various stages of the smart grid in a hybrid photovoltaic – wind system. It tracks and manages network statistics for safe and efficient power delivery. The study is validated by the simulation results based on MATLAB/Simulink software and real time implementation.Документ Model reference adaptive backstepping control of double star induction machine with extended Kalman sensorless control(Національний технічний університет "Харківський політехнічний інститут", 2022) Chaabane, Hadji ; Khodja, Djalal Eddine; Chakroune, Salim; Hadji, DjamelNewly, the design of a controller for speed control of double star induction motor as a research focus. Consequently, backstepping technique is used to recursively construct a stable control law for speed and flux. Nevertheless, this control law coming from backstepping requires the knowledge of speed and flux values; in practice the measurement sensors are expensive and fragile. The novelty of this work consists to propose a control strategy which based on accurate Kalman filter observer that estimates speed, flux and torque. This extended Kalman filter is an optimal state estimator and is usually applied to a dynamic system that involves a random noise environment. Purpose. Apply a backstepping control of double star induction motor based on principle of rotor flux orientation. This approach consists in finding a Lyapunov function that allows deducing a control law and a modified adaptation rule is referred and sufficient conditions for the stability of the command-observer, in contrast to other techniques who use nonlinear principle. Results. The simulation results are shown to illustrate the performance of the proposed scheme under parametric uncertainties by simulation on MATLAB. The obtained results showed the robustness of the sensorless control in front of load and parameters variation of double stator induction motor. The research directions of the model were determined for the subsequent implementation of results with simulation samples.