Кафедра "Турбінобудування"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/51
Офіційний сайт кафедри http://web.kpi.kharkov.ua/turbine
Кафедра "Турбінобудування" була заснована у 1930 році у Харківському механіко-машинобудівному інституті визначним ученим, педагогом і організатор науки, професором Володимиром Матвійовичем Маковським.
Постановою Ради Міністрів України № 665-р від 22 грудня 2006 року науково-дослідний комплекс експериментальних установок щодо вивчення газодинамічних та теплофізичних процесів у турбомашинах кафедри "Турбінобудування" НТУ "ХПІ" набув статусу "Національного надбання України". Це єдиний у країні приклад високої оцінки значущості обладнання університетської кафедри та високих наукових результатів, які одержують за його допомогою. Очолював кафедру на той час доктор технічних наук, лауреат Державної премії України в галузі науки і техніки професор Анатолій Володимирович Бойко.
Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 5 кандидатів технічних наук; 1 співробітник має звання професора, 5 – доцента, 2 – старшого наукового співробітника.
Переглянути
Результати пошуку
Документ Методичні вказівки до виконання розрахункової роботи "Розрахунок газопарової установки утилізаційного типу"(Національний технічний університет "Харківський політехнічний інститут", 2024) Литвиненко, Оксана Олексіївна; Авдєєва, Олена ПетрівнаЗ розвитком газотурбінних установок (ГТУ) у зв’язку з підвищенням початкових параметрів газу з’явилась необхідність утилізувати теплоту газів, що йдуть із газової турбіни. Одним із засобів утилізації теплоти газів, що йдуть є котел-утилізатор (КУ). Котел-утилізатор представляє собою теплообмінник протиточного типу, в якому за рахунок теплоти газів, що йдуть з ГТУ відбувається підігрів живильної води, її випаровування та перегрів отриманої пари до розрахункових параметрів, яка потім використовується в паровій турбіні або на виробництві. Розрізняють одноконтурні та двоконтурні котли-утилізатори. В одноконтурній схемі підігрів живильної води, її випаровування та перегрів отриманої пари відбувається при постійному тиску робочого тіла, який складає 3−5 МПа та постійної витраті живильної води по тракту. Доцільність використання двоконтурних схем обумовлена бажанням підвищити ККД КУ за рахунок зменшення теплових втрат з газами, що йдуть. Для зменшення температури газів необхідно підвищити витрату живильної води, але при використанні одного контуру це приведе к тому, що не буде досягнута розрахункова температура пари на виході з котла. В двоконтурній схемі витрата живильної води в КУ не є постійною величиною по тракту. На вході в котел вона максимальна, що сприяє зменшенню температури газів, що йдуть, а на виході − мінімальна, що дозволяє перегріти пар до розрахункової температури. Для двоконтурних котлів приймають тиск 5−7 МПа в контурі високого тиску і 0,5−0,7 МПа в контурі низького тиску. В розрахунковій роботі треба виконати розрахунок теплової схеми газопорової установки (ГПУ) з одноконтурним або двоконтурним КУ, отримати параметри пари та газів на виході з котла, ККД котельної установки та побудувати теплову діаграму.Документ Методичні вказівки до виконання курсової роботи "Створення комп'ютерної програми розрахунку схем ГТУ"(Національний технічний університет "Харківський політехнічний інститут", 2024) Литвиненко, Оксана Олексіївна; Авдєєва, Олена ПетрівнаДисципліна «Теорія та комп’ютерне проєктування схем газотурбінних установок» містить питання газотурбобудування, що розкриває специфіку газотурбінних установок (ГТУ) і їхню відмінність від паротурбінних установок. В курсі вивчається особливості термодинаміки ГТУ, теплові схеми й зв'язок параметрів ГТУ, оптимізацію цих параметрів і роботу ГТУ на номінальному режимі роботи. Мета курсової роботи – створення комп’ютерної програми для розрахунку схеми ГТУ на номінальному режимі роботи, а саме для визначення оптимального ступеня стиснення при якому ККД або надлишкова (корисна) робота набирають максимальне значення, а питома витрата робочого тіла – мінімальне значення.Документ Методичні вказівки до виконання курсового проєкту "Проєктування рекуперативного теплообмінного апарата"(Національний технічний університет "Харківський політехнічний інститут", 2024) Литвиненко, Оксана Олексіївна; Авдєєва, Олена ПетрівнаКурсовий проєкт з проєктування рекуперативного теплообмінного апарата є однією з перших самостійних інженерних робіт студентів в межах навчання за освітньо-професійною програмою «Енергетика» першого (бакалаврського) рівня вищою освіти профілізації «Цифрова інженерія енергетичних машин та обладнання». У процесі роботи над проєктом студент закріплює теоретичні знання, що отримані в результаті вивчення дисциплін «Основи теплообміну», «Тепло і масообмінні процеси, апарати та установки» шляхом вирішення конкретних інженерних задач та навички користування довідковою літературою, каталогами, прикладними комп’ютерними програмами. В межах курсового проєктування проводиться «Ігрове проєктування» (ІП). Студенти розділяються на підгрупи, кожна з яких виконує своє завдання на проєктування: тепловий конструкторський і гідравлічний розрахунки одного з 4 типів теплообмінних апаратів. Результатом ІП є захист проєкту перед аудиторією, що складається зі студентів та викладачів. Представлення проєкту виконується у вигляді презентації з 8–10 слайдів, яка включає в себе загальні поняття о теплообмінниках, область застосування і конструкцію обраного теплообмінника, порядок теплового та гідравлічного розрахунків, результати розрахунків та висновки. Оцінюється робота кожного студента після колективного обговорення. В результаті ІП студент вчиться працювати в команді, відповідально підходити до поставленої задачі та до строків виконання проєкту, представляти і аналізувати результати своєї роботи.Документ Чисельне дослідження впливу зміни кута атаки на величину коефіцієнта втрат кінетичної енергії та кутів виходу потоку для соплових решіток з поворотними діафрагмами(Лідер, 2021) Жирков, Олександр Григорович; Усатий, Олександр Павлович; Авдєєва, Олена Петрівна; Торба, Юрій ІвановичДокумент Оптимізація та порівняння двох технологій виготовлення робочих решіток для ПЧ ЦВТ турбіни К-330-23,5(Національний технічний університет "Харківський політехнічний інститут", 2021) Усатий, Олександр Павлович; Авдєєва, Олена Петрівна; Пальков, Ігор Андрійович; Пальков, Сергій Андрійович; Іщенко, Олег ІгоревичВ статті викладені результати багатопараметричної оптимізації конструкційних і термогазодинамічних параметрів проточної частини ЦВТ К-330-23,5, які отримані за допомогою розробленої САПР «Турбоагрегат». Знайдені 12 оптимальних рішень для проточної частини ЦВД К-330-23,5 дозволяють не тільки оцінити вплив на ефективність ЦВТ конструкційних параметрів і чисел робочих лопаток ступенів ЦВТ, а і провести порівняльний аналіз двох технологічних підходів виготовлення робочих лопаток – з підрізуванням вихідних кромок і без такої.Документ Створення проточної частини турбіни К-1250-6,9/25 з використанням методів оптимального проектування(Національний технічний університет "Харківський політехнічний інститут", 2021) Пальков, Ігор Андрійович; Пальков, Сергій Андрійович; Іщенко, Олег Ігоревич; Авдєєва, Олена ПетрівнаРозглядаються основні принципи, які використовуються при створенні проточних частин (ПЧ) циліндрів високого (ЦВТ), серед-нього (ЦСТ) і низького тисків (ЦНТ) турбіни К-1250-6,9/25. Описуються підходи до чисельного експерименту при проектуванні проточних частин, перевагою якого є менші трудові, часові і фінансові витрати та більша інформативність порівняно з фізичним експериментом над проточними частинами. При проектуванні проточних частин циліндрів високого і середнього тиску (ЦВСТ) чисельний експеримент виконується за допомогою методу тривимірних в’язких течій. Для цього побудована тривимірна модель облопачування проточної частини, яка складається з великої кількості скінчених об’ємів (елементів) у формі шестигранників, в кожному з яких виконується інтегрування рівнянь газової динаміки. При розробці ЦНТ використовується метод параметризації і аналітичного профілювання перетинів вінців лопаток, при якому профілі описуються кривими четвертого і п'ятого порядків з умовою забезпечення мінімального значення максимальної кривизни і монотонності зміни тривимірної геометрії лопатки вздовж висоти. Такий метод дозволяє отримати оптимальні профілі перетинів лопаток, які максимально відповідають лініям струму і мінімізувати профільні втрати енергії при обтіканні лопаток потоком.Документ Вдосконалення циліндра високого тиску турбіни К-1000-60/1500-2 бл. №4 Балаковської АЕС(Національний технічний університет "Харківський політехнічний інститут", 2020) Пальков, Ігор Андрійович; Пальков, Сергій Андрійович; Іщенко, Олег Ігоревич; Авдєєва, Олена ПетрівнаПідвищення потужності енергоблоків атомних станцій є світовою тенденцію та широко реалізується в країнах Європи та Сполучених шатах Америки. Зазвичай роботи з підвищення потужності блоків атомних станцій проводяться під час планових реконструкцій. Особливостями такої реконструкції є часткова заміна обладнання, що у порівнянні з повною дає значну економію ресурсів. Використання такого підходу дозволяє частково замінити елементи проточної частини, що в свою чергу виконується з метою для забезпечення необхідних параметрів течії в проточній частині турбомашини, а також дозволяє повторно використовувати не модифіковані елементи конструкції. Ця стаття містить узагальнення досвіду АТ «Турбоатом» з проведення вдосконалення циліндру високого тиску, а також розглядаються конструктивні особливості проекту модернізації турбоустановки К-1000-60/1500-2 блоку 4 Балаковської АЕС виробництва ПАТ «Турбоатом». В рамках проекту модернізації АТ «Турбоатом» виконав комплекс теплових і міцністних розрахунків ЦВТ турбіни К-1000-60/1500-2 з урахуванням підвищення теплової потужності реактора до 3210 МВт з використанням існуючих деталей і вузлів. Прийняті конструкторські і схемні рішення в проекті модернізації турбоустановці К-1000-60/1500-2 бл. 4 Балаковської АЕС і високий ступінь уніфікації її елементів, відпрацьованих і освоєних у виготовленні і експлуатації на станціях, сприяють підвищенню якості її технічного обслуговування і ремонтів, дозволяють вважати, що ця турбоустановки матиме високі техніко-економічні показники, а також забезпечують її високу конкурентоспроможність на зовнішньому ринку. Удосконалена проточна частина ЦВТ оснащена розвиненою системою видалення вологи. Відведення вологи з міжвінцевих зазорів здійснюється системою дренажних отворів в надбандажних козирках діафрагм. Волога з межступеневих зазорів відводиться в камери видалення вологи за робочими лопатками. Ефективність видалення вологи за робочими лопатками забезпечується конічним меридіональним обводом робочих лопаток і вологосборними канавками на бандажах робочих лопаток. Розрахункова величина збільшення електричної потужності турбоустановки К-1000-60/1500-2 бл. 4 Балаковської АЕС при підвищенні теплової потужності реактора до 3210 МВт становить 52,56 МВт.Документ Чисельне дослідження обтікання соплових решіток з поворотними діафрагмами(Національний технічний університет "Харківський політехнічний інститут", 2020) Жирков, Олександр Григорович; Усатий, Олександр Павлович; Авдєєва, Олена Петрівна; Торба, Юрій ІвановичПредставлені результати чисельного дослідження плоского обтікання соплової решітки з поворотною діафрагмою, виконано порівняння результатів розрахунків з експериментальними даними. Розрахунки виконувалися за допомогою програмного комплексу Fluent (№ клієнта 01067322). В результаті виконаних розрахунків були отримані: картини течії у міжлопаточному каналі і за ним; розподіл коефіцієнтів втрати кінетичної енергії по фронту решітки при різних ступінях відкриття вхідної частини каналів соплової решітки.Документ Застосування комплексної методології для оптимізації проточних частин парових турбін(Національний технічний університет "Харківський політехнічний інститут", 2020) Авдєєва, Олена Петрівна; Усатий, Олександр Павлович; Пальков, Ігор Андрійович; Пальков, Сергій АндрійовичВ статті викладено ефективність застосування комплексної методології при модернізації існуючих проточних частин парових турбін. Наведена методологія дозволяє збільшити абсолютний ККД на 0,83 %, а потужність турбіни на 1,87 % за рахунок використання об’єктно-орієнтованого підходу. Використання рекурсивного обходу різних рівнів оптимізації задля обміну інформацією між об’єктами дозволяє знайти оптимальне рішення для великої кількості конструктивних параметрів.Документ Порівняльна оцінка ефективності двох технологічних підходів з проектування та виготовлення робочих решіток циліндра високого тиску турбіни К-330-23,5(Національний технічний університет "Харківський політехнічний інститут", 2019) Усатий, Олександр Павлович; Пащенко, Юрій Григорович; Авдєєва, Олена ПетрівнаВ роботі наведена порівняльна оцінка ефективності двох технологічних підходів з проектування та виготовлення робочих решіток ротора циліндра високого тиску (ЦВТ) турбіни К-330-23,5. Один підхід потребує використання більш удосконаленої, але і більш дорогої технології виготовлення робочих лопаток, використання яких дозволяє отримати більш ефективні робочі решітки ротора ЦВТ. Інший підхід базується на використанні спрощеної технології виготовлення робочих лопаток з меншими витратами на їх виробництво, але їх використання призводить до виникнення додаткових втрат енергії в таких решітках, що веде до зниження ефективності решіток і всієї проточної частини ЦВТ турбіни К-330-23,5.