Кафедра "Зварювання"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/5280
Офіційний сайт кафедри http://web.kpi.kharkov.ua/svarka
Кафедра "Зварювання" заснована у 2010 році професором Віталієм Володимировичом Дмитриком. Ініціював створення кафедри особисто академік Борис Євгенович Патон. Її створення зумовлене проханням провідних підприємств – флагманів економіки України: ОАО "Турбоатом", ОАО "Електроважмаш", ОАО Харківський турбінний завод, ГП завод ім. Малишева, ОАО Харківський авіаційний завод та ін.
Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють: 2 доктора технічних наук, 4 кандидата технічних наук; 2 співробітника мають звання професора, 3 – доцента.
Переглянути
Результати пошуку
Документ Самопоширюваний високотемпературний синтез: стан, проблеми та перспективи розвитку(Таврійський національний університет ім. В. І. Вернадського, 2022) Лузан, Сергій Олексійович; Ситников, Павло АндрійовичРоботу присвячено одній з актуальних проблем галузевого машинобудування – підвищенню ресурсу деталей сільськогосподарської та ґрунтообробної техніки за рахунок нанесення зміцнюючих та відновлювальних покриттів на основі композиційних матеріалів. У якості перспективного методу отримання композиційних матеріалів запропоновано використання – самопоширюваного високотемпературного синтезу (СВС), одного з високотехнологічних, наукоємних, енерго- та ресурсозберігаючих методів. Висвітлено історичні передумови та внесок О. Г. Мержанова, І. П. Боровінської та В. М. Шкиро у відкриття нового фізичного явища «твердого полум’я», що стало основою до появи СВС, ретроспективно наведені основні етапи його формування та розвитку. На основі огляду вітчизняних наукових робіт та розробок з використанням СВС-технології висвітлено створення трибологічних матеріалів типу TiFe-xC, проаналізовано та порівняно результати з розробки пористих (фільтраційних) металокерамічних матеріалів з використанням відходів машинобудування, представлено результати математичних розрахунків СВС-реактору та деяких реакцій синтезу, окреслено можливості суміщення СВС з технологіями нанесення покриттів. Авторами статті наведено власні наукові результати щодо розробки композиційного матеріалу, отриманого з використанням самопоширюваного високотемпературного синтезу та попередньої механічної активації вихідних реагентів, що містять у якості зносостійких дисперсних фаз оксиди SiO2 та AI2O3. На основі проведених досліджень підтверджено перспективність використання розробленого композиційного матеріалу зі структурою «зміцнююча фаза – матриця» {10 % (Ti–C–SiO2–Al2O3–Fe2O3–Al– ПТ-НА-01) + 90 % (ПГ-10Н-01)} для дугового наплавлення зміцнюючих та відновлювальних покриттів деталей машин. В кінці роботи сформульовано загальні висновки та наведено перелік подальших перспективних досліджень за цим напрямом.Документ Нові матеріали та прогресивні технології їх отримання(Сумський державний університет, 2024) Лузан, Сергій Олексійович; Білоус, Леонід ОлександровичДокумент Study of the structure and properties of deposited layers of NiCrBSi alloy, modified with composite material(Slovenian Research and Innovation Agency, 2023) Sytnykov, P. A.The structure and properties of deposited layers with a self-fluxing PG-10N-01 alloy of the NiCrBSi system, which is modified with composite material obtained by selfpropagating high-temperature synthesis, were studied. Powders of titanium, technical carbon, refractory clay, aluminum, iron oxide, and PT-NA-01 thermosetting powder are used as the initial components of the modifying composite material. The powders were mechanically activated in a ball mill, pressed into a cylindrical sample, and then subjected to the process of self-propagating high-temperature synthesis. The deposition of the samples was carried out with a non-fusible graphite electrode with a diameter of 9.5 mm, at a current of 110 A, using an inverter power source SV-290NK. It was established that the structure of the layer deposited with the PG-10N-01 alloy consists of a solid solution based on nickel (γ-Ni) and a eutectic formed on its basis with Ni₃B boride. Single inclusions of carbides of chromium Cr3C₂ and boron B₄C were also detected in the deposited layer. When adding a modifying composite material to the PG-10N-01 alloy, the structure of the deposited layer consists of γ-hard solution and eutectics, strengthened by carbides of titanium TiC and silicon SiC, which increase the microhardness and wear resistance of the layer. The microhardness of the layer deposited with the composite material, which contained 10% of the modifying component, is 660 HV, which exceeds the microhardness of the layer deposited with the PG-10N-01 alloy, which is equal to 510 HV. Based on the results of the research, operational tests of the set of duckfoot blades of the KPP-8 semi-trailer cultivator, aggregated with the New Holland T 6090 tractor, were carried out in the conditions of the Kamianuvatka farm (Novoukrainka district, Kirovohrad region). Based on the tests, it was proved that the relative wear resistance of duckfoot blades made of 65G steel, strengthened on the reverse side according to the "toe-working blade" scheme by depositing a layer of composite material is 1.7 times greater compared to the wear resistance of blades made by standard technology logic.Документ Зносостійкі наплавлені композиційні шари на основі cамофлюсівного сплаву системи NiCrBSi(Інститут надтвердих матеріалів ім. В. М. Бакуля НАН України, 2023) Ситников, Павло АндрійовичДокумент Plasma coatings based on self-fluxing NiCrBSi alloy with improved wear resistance properties(Інститут проблем машинобудування ім. А. М. Підгорного НАН України, 2023) Sytnykov, P. A.The structure and properties of plasma coatings sprayed with a composite material based on a self-fluxing NiCrBSi alloy (PG-10N-01 alloy) modified with a composite material obtained by self-propagating high-temperature synthesis were studied. Titanium powders, carbon black, aluminum, iron oxide, PT-NA-01 thermosetting powder and PGOSA-0 refractory clay were used as the initial components of modified with a composite material. Mixing and mechanical activation of the initial powders was carried out in a BM-1 ball mill for 15 minutes at 130 rpm in a ratio of 1 to 40 of the mass of the charge to the mass of the falling bodies (steel balls with a diameter of 6 mm). Initiation of the self propagating high-temperature synthesis was carried out using a special device by introducing a heated nichrome spiral. The process of coatings spraying was performed on the MPN-004 microplasma spraying unit at a current of 45 A, a voltage of 30 V with a distance of 100 mm on samples made of 65G steel with a thickness of 3 mm. Argon was used as a plasmaforming and shielding gas. In order to substantiate the feasibility of the self-propagating high-temperature synthesis, a part of the samples was sprayed with a self-fluxing alloy PG-10N-01 with the addition of a mechanical mixture of starting powders. It was established that as a result of plasma spraying of the PG-10N-01 alloy and the composite material of the modified with a composite material + PG-10N-01 composition, coatings with a dense and multiphase structure are formed. The microstructure of the PG-10N-01 alloy coating consists of a solid solution based on nickel (γ-Ni) with inclusions of nickel borides Ni₃B and chromium carbides Cr₃C₂. When adding modified with a composite material in a nickelbased solid solution, in addition to the phases indicated above, borides of titanium TiB₂, carbides of titanium TiC and silicon SiC were detected. Their presence leads to an increase in the microhardness of such coatings and their greater wear resistance under conditions of abrasive wear in comparison with the spraying coating of the PG-10H-01 alloy.Документ Дослідження впливу параметрів механічної активації шихти Ti–C–Al–SiO₂–Al₂O₃–Fe₂O₃–ПТ-НА-01 на тривалість синтезу композиційного матеріалу, що модифікує(Харківський національний автомобільно-дорожній університет, 2023) Лузан, Сергій Олексійович; Ситников, Павло АндрійовичУ роботі досліджено вплив параметрів механічної активації на тривалість синтезу та морфологію шихти Ti–C–Al–SiO₂–Al₂O₃–Fe₂O₃–ПТ-НА-01, призначеної для одержання композиційного матеріалу, що модифікує, отриманого самопоширюваним високотемпературним синтезом. Як вихідні матеріали використано порошки Ti–C–Al–SiO₂–Al₂O₃–Fe₂O₃–ПТ-НА-01. Механічну активацію шихти з варіюванням параметрів оброблення здійснено у розробленому авторами роботи кульовому млині моделі КМ-1, перервного принципу дії з об’ємом робочого сталевого барабана 1,5‧10⁻⁴м³. Маса млина становить 5,8 кг, габарити – (Ш–В–Д) 190–180–230 мм. Тривалість механічного оброблення шихти складала від 1 до 25 хв зі швидкістю обертання барабана від 50 до 180 об/хв. Співвідношення маси шихти до маси тіл подрібнення (сталевих куль, діаметром 6 мм) становило 1 : 20 та 1 : 40. Дослідженнями визначено, що рекомендованим режимом механічної активації шихти Ti–C–Al–SiO₂–Al₂O₃–Fe₂O₃–ПТ-НА-01 є оброблення протягом 15 хв за швидкості обертання барабана 130 об/хв та співвідношення 1 : 40 маси шихти до маси сталевих куль. Гранулометричний склад шихти зменшується з максимального розміру 100 мкм до 40 мкм. На основі досліджень визначено, що таке оброблення шихти призводить до підвищення хімічної активності компонентів та ефективності протікання СВС-процесу внаслідок зниження тривалості його ініціювання та процесу синтезу.Документ Композиційні матеріали для наплавлення, одержанні з використанням СВС-процесу(2023) Лузан, Сергій Олексійович; Ситников, Павло АндрійовичДокумент Композиційний матеріал для наплавлення деталей, які працюють в умовах абразивного середовища(2023) Ситников, Павло Андрійович; Лузан, Сергій ОлексійовичДокумент Вибір зв’язуючої речовини композиційного матеріалу застосованого для дугового наплавлення(Таврійський державний агротехнологічний університет ім. Дмитра Моторного, 2023) Ситников, Павло АндрійовичДокумент Кульовий млин для механічної активації матеріалів(Національний технічний університет "Харківський політехнічний інститут", 2022) Ситников, Павло Андрійович; Лузан, Сергій Олексійович