2024 № 2 Системний аналіз, управління та інформаційні технології
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/84913
Переглянути
Документ Intelligent technology for semantic completeness assessment of business process models(Національний технічний університет "Харківський політехнічний інститут", 2024) Rudskyi, Oleksandr Vadymovych; Kopp, Andrii Mykhailovych; Goncharenko, Tetiana Yevhenivna; Gamayun, Igor PetrovychIn this paper, we present a method for comparing business process models with their textual descriptions, using a semantic-based approach based on the SBERT (Sentence-Bidirectional Encoder Representations from Transformers) model. Business process models, especially those created with the BPMN (Business Process Model and Notation) standard, are crucial for optimizing organizational activities. Ensuring the alignment between these models and their textual descriptions is essential for improving business process accuracy and clarity. Traditional set similarity methods, which rely on tokenization and basic word matching, fail to capture deeper semantic relationships, leading to lower accuracy in comparison. Our approach addresses this issue by leveraging the SBERT model to evaluate the semantic similarity between the text description and the BPMN business process model. The experimental results demonstrate that the SBERT-based method outperforms traditional methods, based on similarity measures, by an average of 31%, offering more reliable and contextually relevant comparisons. The ability of SBERT to capture semantic similarity, including identifying synonyms and contextually relevant terms, provides a significant advantage over simple token-based approaches, which often overlook nuanced language variations.Документ Software development and research for machine learning-based structural errors detection in BPMN models(Національний технічний університет "Харківський політехнічний інститут", 2024) Kopp, Andrii Mykhailovych; Orlovskyi, Dmytro Leonidovych; Gamayun, Igor Petrovych; Sapozhnykov, Illia VitaliiovychThe most important tool for process management is business process modeling. Business process models allow to graphically represent the sequences of events, activities, and decision points that make up business processes. However, models that contain errors in depicting the business process structure can lead to misunderstanding of a business process, errors in its execution, and associated expenses. Thus, the aim of this study is to ensure the comprehensibility of business process models by detecting structural errors in business process models and their subsequent correction. During the analysis of the Business Process Management (BPM) lifecycle, it was found that the created business process models do not have a stage of control for the presence of errors in them. Therefore, the paper analyzes and improves the BPM lifecycle using the proposed approach. In the improved BPM lifecycle, it is proposed to take into account the correctness validation stage of business process models using the developed software.