Вісник № 22
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/37348
Переглянути
Документ Використання принципів локальності та звя’зності контексту в рекомендаційних системах(НТУ "ХПІ", 2018) Лещинський, Володимир Олександрович; Лещинська, Ірина ОлександрівнаДосліджено проблему релевантності вхідних даних в рекомендаційних системах. Дана проблема виникає внаслідок недостатньої диференціації даних про товари відносно споживачів, що не дозволяє в повній мірі індивідуалізувати їх вподобання в рекомендаційній системі. Для вирішення цієї проблеми пропонується враховувати локальні контексти споживачів, що відповідають умовам їх вибору. Використання контексту дає можливість задати контекстні обмеження на можливі варіанти упорядкованого переліку рекомендації і тим самим підвищити якість роботи рекомендаційної системи. З метою забезпечити контекстно-орієнтовані рекомендації пропонується послідовно узагальнити та відфільтрувати локальні контексти споживачів з використанням принципів локальності і зв’язності. Особливість використання цих принципів полягає у тому, що поєднуються статичний та динамічний аспекти контексту. Перший аспект характеризується множиною властивостей об’єктів, які цікавлять споживача. Другий аспект задається у вигляді патернів подій, що відображують поведінку споживача відносно цих об’єктів. Запропонований зв’язок між аспектами полягає в тому, що кожна подія відповідає парі послідовних множин властивостей об’єктів, які відрізняються одним значенням властивості. Запропоновано двохфазовий підхід до формування контексту прийняття рішень для рекомендаційної системи, що передбачає послідовну інтеграцію статичної та динамічної складових контексту. При інтеграції використовуються відношення еквівалентності, схожості та сумісності. При реалізації перщої фази формується item-based, а другої – user-based опис контексту. Потім ці описи поєднуються та фільтруються у відповідності до властивостей нового споживача, якому видаються рекомендації. Практичне значення запропонованого підходу полягає в тому, що він дозволяє видалити не релевантні вхідні дані з урахуванням контексту прийняття рішень споживачем і на цій основі підвищити точність рекомендацій.