141 "Електроенергетика, електротехніка та електромеханіка"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/49050
Переглянути
Документ Удосконалення проєктного аналізу електромагнітних параметрів та характеристик індукторів обертового магнітного поля для технологічної обробки різних речовин(Національний технічний університет "Харківський політехнічний інститут", 2020) Шилкова, Лариса ВасилівнаДисертація на здобуття наукового ступеня доктора філософії за спеціальністю 141 – Електроенергетика, електротехніка та електромеханіка. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2020. Об'єктом дослідження є індуктори обертового магнітного поля для технологічної обробки різних речовин. Предметом дослідження є електромагнітні параметри та характеристики індукторів обертового магнітного поля. Дисертація присвячена вирішенню актуального наукового завдання з удосконалення проєктного аналізу електромагнітних параметрів в режимі неробочого ходу і характеристик індукторів обертового магнітного поля для технологічної обробки різних речовин в режимі навантаження за наявністю феромагнітних елементів, що обертаються в його робочій камері, на основі чисельно-польових розрахунків. У вступі обґрунтовано актуальність задач дослідження, показано зв'язок роботи з науковими програмами, планами, темами, наведена наукова новизна та сформульоване практичне значення отриманих результатів. В першому розділі установлено, що існуючі методи проєктування індукторів обертового магнітного поля на базі статора трифазного асинхронного двигуна базуються на розрахунках магнітного поля в режимі ідеального неробочого хода і не використовують чисельних методів, які, як представлено в дисертації, дозволяють розраховувати характеристики індуктора в режимі навантаження за наявності феромагнітних елементів в його робочій камері, і дають істотний прогрес в можливостях проєктування та вдосконаленні їхньої конструкції. У другому розділі показано, що застосування квазі-тривимірної математичної моделі індуктора, заснованої на методі плоско-ортогональних розрахункових моделей, що поєднують магнітні поля поперечного та поздовжнього перерізів індуктора, дозволяє проаналізувати розподіли магнітної індукції у його поперечному і поздовжньому перерізах та проявити у достатньо повній мірі його тривимірний характер. Представлена методика на основі чисельно-польових розрахунків магнітного поля для проведення аналізу впливу скорочення обмотки статора індуктора на його електромагнітні параметри. Запропонована методика розрахунку потужності магнітних втрат на основі середньоквадратичного значення максимумів модуля магнітної індукції, яка виявилась універсальною з точки зору різних геометричних форм зубцево-пазової структури і ярма осердя статора, оскільки не вимагає спрощень геометрії розрахункових моделей цих частин конструкції. В третьому розділі вперше визначено, що кут навантаження індуктора відповідає куту повороту магнітного поля, але виявляється в два рази меншим, ніж кут фази струмів обмотки індуктора. Період моментної кутової характеристики виявляється в два рази меншим періоду струмів обмотки індуктора, що відповідає класичним уявленням про кутові функції реактивного моменту електричних машин. Це дозволяє віднести розглянутий індуктор, разом з анізотропним магнітним середовищем в робочій камері, до класу реактивних синхронних машин, а конкретно – двигунів. Запропоновано метод врахування магнітної анізотропії робочої камери індуктора залежно від концентрації феромагнітних елементів в ній. Це дозволило отримати математичну модель для визначення кількісних і фазових співвідношень його електромагнітних величин в режимі навантаження: магнітної індукції, магнітного потокозчеплення, ЕРС, струму, напруги обмотки статора, а також електромагнітний момент в його робочій камері. Представлена методика на основі чисельних розрахунків магнітних полів, яка дозволяє організувати ітераційний процес для розрахункового аналізу характеристик індуктора, що працює зі змінною навантаження при стабільному струмі або напрузі живлення його обмотки. Тестовими розрахунками виявлено, що на ділянці сталої роботи в енергетичному відношенні індуктор характеризується досить високим ККД і вельми низьким значенням коефіцієнта потужності. При порівнянні кутових характеристик індуктора виявлено, що більш раціональним для експлуатації індуктора є режим при стабілізації напруги, який в бажаному робочому діапазоні кута навантаження до 25° забезпечує кращі його електричні, магнітні, силові і енергетичні параметри. Запропонований струмовий метод контролю концентрації феромагнітних елементів у робочій камері індуктора в процесі його експлуатації. Практичні розрахунки показали, що такий метод є більш чутливим і не вимагає ускладнення конструкції індуктора у порівнянні з альтернативним методом контролю за допомогою вимірювальних витків. Спостереження за струмом обмотки індуктора дозволяє контролювати заповнення його робочої камери феромагнітними елементами, не перериваючи процесу експлуатації. Це дає можливість своєчасно поповнювати камеру такими елементами і, тим самим, підтримувати на заданому рівні технологічну обробку різних речовин, що пропускаються через цю камеру. У четвертому розділі представлені експериментальні дослідження фізичної моделі індуктора, які підтвердили результати математичного моделювання електромагнітних процесів індуктора в режимі неробочого ходу і в його робочому режимі.