Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    The aligned Kazakh-Russian parallel corpus focused on the criminal theme
    (2019) Khairova, N. F.; Kolesnyk, Anastasiia; Mamyrbayev, Orken; Mukhsina, Kuralay
    Nowadays, the development of high-quality parallel aligned text corpora is one of the most relevant and advanced directions of modern linguistics. Special emphasis is placed in creating parallel multilingual corpora for low resourced languages, such as the Kazakh language. In the study, we explored texts from four Kazakh bilingual news websites and created the parallel Kazakh-Russian corpus of texts that focus on the criminal subject at their base. In order to align the corpus, we used lexical compliances set and the values of POS-tagging of both languages. 60% of our corpus sentences are automatically aligned correctly. Finally, we analyzed the factors affecting the percentage of errors.
  • Ескіз
    Документ
    Logical-linguistic model for multilingual Open Information Extraction
    (2020) Khairova, N. F.; Mamyrbayev, Orken; Mukhsina, Kuralay; Kolesnyk, Anastasiia
    Open Information Extraction (OIE) is a modern strategy to extract the triplet of facts from Web-document collections. However, most part of the current OIE approaches is based on NLP techniques such as POS tagging and dependency parsing, which tools are accessible not to all languages. In this paper, we suggest the logical-linguistic model, which basic mathematical means are logical-algebraic equations of finite predicates algebra. These equations allow expressing a semantic role of the participant of a triplet of the fact (Subject-Predicate-Object) due to the relations of grammatical characteristics of words in the sentence. We propose the model that extracts the unlimited domain-independent number of facts from sentences of different languages. The use of our model allows extracting the facts from unstructured texts without requiring a pre-specified vocabulary, by identifying relations in phrases and associated arguments in arbitrary sentences of English, Kazakh, and Russian languages. We evaluate our approach on corpora of three languages based on English and Kazakh bilingual news websites. We achieve the precision of facts extraction over 87% for English corpus, over 82% for Russian corpus and 71% for Kazakh corpus.