Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
6 результатів
Результати пошуку
Документ Automation of Quasi-Closed Space Method Based on ARM Microcontroller(Institute of Electrical and Electronics Engineers, 2016) Zaitsev, R. V.; Kirichenko, M. V.; Prokopenko, D. S.; Zaitseva, L. V.Документ Development and approbation the automatization complex current-voltage characteristics measurement(Institute for Radiophysics and Electronics of the National academy of sciences of Ukraine, 2014) Prokopenko, D. S.; Zaitsev, R. V.; Kirichenko, M. V.Документ High-voltage power take-off system for photovoltaic station(Кременчуцький національний університет ім. Михайла Остроградського, 2016) Zaitsev, R. V.; Kirichenko, M. V.; Khrypunov, G. S.; Prokopenko, D. S.Документ Hybrid solar generating module development for high-efficiency solar energy station(Сумський державний університет, 2018) Zaitsev, R. V.; Kirichenko, M. V.; Khrypunov, G. S.; Prokopenko, D. S.; Zaitseva, L. V.Experimentally established, the influence of the working temperature and solar radiation power on the efficiency of industrial production silicon solar cells. Based on the experimental results designed the concept of a hybrid solar generating module equipped with a mirror concentrator of solar radiation and solar cells cooling system for using in high-performance solar energy station. Concentrator of solar radiation provides in 1.5-time increase of electrical power generating by such module, and water-cooling system can reduce the equilibrium temperature of the module up to 10 degrees and twice reduce efficiency losses from solar cells overheating. The proposed concept will reduce the number of modules needed to build solar energy station.Документ Operating temperature effect on the thin film solar cell efficiency(Сумський державний університет, 2019) Zaitsev, R. V.; Kirichenko, M. V.; Khrypunov, G. S.; Radoguz, S. A.; Khrypunov, M. G.; Prokopenko, D. S.; Zaitseva, L. V.The made research results of the dependence of the film photovoltaic converter efficiency on their operating temperature and their comparison are considered in the paper. The physical mechanisms of temperature influence analysis on output, diode and electronic parameters of photovoltaic converters were conducted. The output parameters determination of the flexible photovoltaic converters was carried out by measurement of light current-voltage characteristics by using illuminator based on powerful semiconductor LEDs with different colors for simulated radiation which is close to the standard ground and ultraviolet solar spectrum. For ensuring effective non-destructive switching of the test specimens of the flexible PVC based on cadmium telluride to the measurement circle, the special contact device was developed and used. The main feature of contact device is four separate vertically moving metal probes in form of semi spheres with polished surfaces, which makes it impossible to puncture the PVC electrodes. These probes have possibility of individual positioning of each probe that is carried out with the help of a hard rotary console of variable length attached to the body and can be pressed with a given effort without impact on the frontal and any rear electrodes of the PVC experiments. The efficiency temperature coefficients of the photovoltaic converter, which make up for devices with a CdTe of 0.14 %/C, CuInSe2 – 0.36 %/C, amorphous silicon - 0.21 %/C were obtained. The analytical processing and analysis of the light diode characteristic effect on the PVC efficiency based on the CdTe showed that the temperature stability of their efficiency is ensured by the diode current density, the incision of which increases by 50 % from 1.9·10 – 9 A to 2.7·10 – 9 A with the temperature rise from 20 °С to 50 °С. At the same time, it has been established for PVC on the CuInSe and amorphous silicon base that the decrease of short circuit current density, open circuit voltage and fill factor of current-voltage characteristics plays the main role in efficiency reduction with rising temperature.Документ Calculation of operating parameters of high-voltage power take-off system for the photovoltaic facility(ТОВ "Друкарня "Мадрид", 2016) Zaitsev, R. V.; Kyrychenko, M. V.; Kholod, A. V.; Zaitseva, L. V.; Prokopenko, D. S.; Khrypunov, G. S.To ensure maximum production of electric power by photovoltaic vacilities, in addition to using highly efficient photovoltaic modules equipped with solar radiation concentrators must use a highly effective power take-off system. This paper is inscribed to solving the problem of a highly efficient and economic power take-off system development. Methodology. To solving the problem, we implemented three stages. On the first stage examines the dependence of electrical power from the intensity of the incident solar radiation. Based on this, the second stage is calculated the DC-DC converter resonant circuit and its working parameters, and developed circuit diagram of DC-DC converter. On the third stage, we carry out an analysis of power take-off system with step up DC-DC converter working. Results. In this paper, we carry out the analysis of working efficiency for photovoltaic facility power take-off system with step-up boost converter. The result of such analysis show that the efficiency of such system in a wide range of photovoltaic energy module illumination power is at 0.92, whereas the efficiency of classic power take-off systems does not exceed 0.70. Achieved results allow designing a circuit scheme of a controlled bridge resonant step-up converter with digital control. Proposed scheme will ensure reliable operation, fast and accurate location point of maximum power and conversion efficiency up to 0.96. Originality. Novelty of proposed power take-off system solution constitute in implementation of circuit with DC-DC converters, which as it shown by results of carrying out modeling is the most effective. Practical value. Practical implementation of proposed power take-off system design will allow reducing losses in connective wires and increasing the efficiency of such a system up to 92.5 % in wide range of photovoltaic energy modules illumination.