Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
6 результатів
Результати пошуку
Документ Electrochemical nanocomposit multifunctional coatings: syntesis and properties(Vasyl' Stus Donetsk National University, 2022) Karakurkchi, H. V.; Sakhnenko, M. D.; Indykov, S. M.; Stepanova, I. I.Документ Mechanical properties of galvanic metaloxide Fe-Co-MoOₓ coating(ТОВ "Твори", 2021) Tur, Yu. I.; Sakhnenko, M. D.; Ved', M. V.; Yermolenko, I. Yu.; Karakurkchi, G. V.Документ Electrode Materials For Hydrogen Energy(CPN Publishing Group, 2022) Nenastina, T. O. ; Sakhnenko, M. D.; Yermolenko, I. S.; Korohodska, A. M.Regularities of cathodic hydrogen evolution on composite electrolytic coatings with Co-Mo-WOx, Co-Mo-ZrO2 and Co-W-ZrO2 alloys are established. The kinetic parameters of the reaction of hydrogen evolution on cobalt alloys, such as the slope coefficients of the Tafel dependences, transfer coefficients, and exchange currents, have been determined. A mechanism for hydrogen evolution on cobalt composite alloys is proposed. The synthesized composite coatings can be recommended as active layers for electrodes used in hydrogen synthesis.Документ Pedagogical Functional of Cyclic Testing(CPN Publishing Group, 2022) Dzheniuk, A. V.; Sakhnenko, M. D.; Zhelavska, Y. A.The didactic aspects of the previously proposed method of cyclic testing are investigated. The technique consists in presenting students with the same test system until they pass it without errors. It is shown that this method provides more opportunities for qualitative control of knowledge, performs a forced educational function than traditional testing methods, and also allows you to assess the motivation for learning.Документ Cobalt and manganese oxide catalytic systems on valve metals in ecotechnologies(Kyiv National University of Technologies and Design, 2017) Karakurkchi, A. V.; Sakhnenko, M. D.; Ved, M. V.; Gorohivskiy, A. S.; Galak, O.; Menshov, S.; Matykin, O.The paper discusses the preparation of cobalt and manganese oxide catalytic systems on valve metals (aluminum and titanium alloys) for eco-technologies. Oxide catalysts with d-metals based on aluminum are widely used for reduce the toxic gases emission from internal combustion engines. Catalysts based on Titania doped with transition metal oxides are also widely used in the heterogeneous and especially photo-catalysis. The higher catalytic properties in this case are demonstrated by the nano-structured oxide systems with developed surface both on aluminum and titanium alloys. From the point of view of the application convenience, better technological forms of a catalyst are the thin-film oxide coatings, formed directly on the metal substrate by the method of plasma-electrolytic oxidizing. It is considered the features of the conversion coatings formation on aluminum and titanium alloys by plasma electrolytic oxidation in alkaline electrolytes. The effect both the concentration and ratio of the electrolyte components and processing conditions on the composition and the morphology of the surface layers is studied. The difference in the plasma oxidation parameters of aluminum and titanium alloys is attributed with the various specific electric resistance of matrix metal as well as the alloying elements oxides. The oxides’ composition influence on the surface relief and their properties is investigated. The factors influenced on the catalytic properties of single and mixed oxide systems are established and the prospects for their use in technology of neutralization of toxic substances are discussed.Документ Macroscopik simulation of atom-sized structures of functional materials: phenomenology of the elongated electrode system(Institute for Single Crystals, 2017) Pospelov, A. P.; Kamarchuk, G. V.; Savytskyi, A. V.; Sakhnenko, M. D.; Ved, M. V.; Vakula, V. L.