Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Excitation of own oscillations in semiconductor components of radio products under the exposure of third-party electromagnetic radiation
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Serkov, Aleksandr; Breslavets, Vitalii; Breslavets, Juliya; Yakovenko, Igor
    The subject matter is the processes of analysis and mechanisms of interaction of EMP-induced currents and voltages with the processes characterizing the functional purpose of radio products, is usually carried out within the framework of the theory of distributed circuits. The presented approach makes it possible to evaluate the performance criteria in general (for example, to evaluate the critical energy characterizing a thermal breakdown), however, issues related to the determination of various types of electromagnetic interactions that occur directly in the components of a product under the influence of EMR remain open. The aim is the possibility of setting up theoretical and experimental studies based on the proposed calculation model for excitation of natural vibrations of a semiconductor structure (exponential growth of amplitude). The parameters of a third-party pulsed electromagnetic field, induced currents and characteristics of semiconductor devices have been established within which the regime of amplification of natural vibrations of a semiconductor structure is observed. The objectives are: mechanisms of interaction of induced currents with surface vibrations of semiconductor components of a radio product under the influence of pulsed electromagnetic radiation. The methods used are: methods of the theory of small perturbations in determining the spectrum of natural oscillations of the system - currents induced by electromagnetic radiation and natural oscillations of the components of the radio product. The following results are obtained: The mechanisms for the appearance of reversible failures of semiconductor components of radio products under the influence of third-party pulsed electromagnetic fields are determined. It has been established that the presence of a current induced by external radiation leads to the establishment of a mode of amplification of natural oscillations of semiconductor components of a radio product (reversible failures). Conclusion. Quantitative estimates of amplification (generation) modes of oscillations of semiconductor devices, distorting their performance depending on the parameters of external electromagnetic influence, allows developing mechanisms for electromagnetic compatibility of microwave radio products. A comparative analysis of the calculated data obtained in the work can be used in the manufacture of radio devices operating in the millimeter and submillimeter range (amplifiers, generators and frequency converters).
  • Ескіз
    Документ
    Excitation of magnetoplasma oscillations in semiconductor structures by fluxes of charged particles
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Serkov, Aleksandr; Breslavets, Vitaliy; Yakovenko, Igor; Fomenko, Andrii
    The subject of the papers is the processes of analysis and physical model of excitation (amplification) of magnetoplasma oscillations (helicons) by fluxes of charged particles (electrons) in the presence of a constant magnetic field. This model is based on the Cherenkov mechanism for converting kinetic energy of particles into the energy of natural electromagnetic oscillations of solid-state (semiconductor) structures under resonance conditions when the particle velocities coincide with phase velocities of oscillations. The aim here is to justify the formulation of theoretical studies basing on the proposed physical model of generation (amplification) of electromagnetic oscillations (emergence of oscillation instabilities, i.e., exponential growth of their amplitude). We define parameters intervals for the external magnetic field, particle fluxes and types of semiconductor structures which this physical model is applied to. We perform theoretical study of the influence charged particle fluxes have on waveguide characteristics of semiconductor structures. The study justifies the possibility of generation and amplification of magnetoplasma oscillations in the submillimeter range. Our objectives are theoretical studies of the interaction of moving charges with electromagnetic oscillations of a semiconductor structure under conditions of Cherenkov radiation. The methods used are the method of successive approximations for solving the dispersion equations for a system of charged particle flux - semiconductor structure within the framework of hydrodynamic approach. The following results are obtained: Theoretical studies of the functioning of semiconductor components of electrical radio equipment in the presence of charged particle fluxes have been carried out. It is shown that the effect of the particle flux is characterized by the emergence of oscillation instabilities in the semiconductor structure. We have determined one of the mechanisms for the excitation of magnetoplasma oscillations based on the interaction of moving charges with the intrinsic fields of the structures that constitute a semiconductor unit. Such equipment failures occur under conditions of Cherenkov radiation. We have shown that this interaction leads to appearance of a mode of oscillation generation. The results of a comparative analysis of the data obtained in this work make it possible to use the proposed physical model to determine the criteria for the occurrence and development of instabilities of magnetoplasma oscillations. Conclusions. The results obtained in this work can be used in the development of active microwave range devices (amplifiers, generators and transducers of electromagnetic oscillations of the millimeter and submillimeter bands). The comparative analysis of quantitative estimates of the growth rates of oscillation instabilities, depending on the spatial configuration of the acting field (when induced current is parallel to the structure boundary), carried out in this work, provides a solution to the problem of optimizing the operating characteristics of active microwave devices.