Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Каталізатор для другого ступеня окиснення аміаку
    (ДП "Український інститут інтелектуальної власності", 2009) Близнюк, Ольга Миколаївна; Савенков, Анатолій Сергійович; Ратушна, Лідія Миколаївна; Скляров, Віталій Леонідович; Антонов, Олег Михайлович
    Каталізатор для другого ступеня окиснення аміаку, що містить оксид кобальту, який відрізняється тим, що він містить додатково оксиди цирконію та хрому при наступному співвідношенні компонентів, мас. %: оксид кобальту Со₃O₄ 70,0-75,0; оксид цирконію ZrO₃ 20,0-25,0; оксид хрому Сr₂О₃ 3,0-5,0.
  • Ескіз
    Документ
    Склоемалева фрита подвійного призначення
    (ДП "Український інститут промислової власності", 2009) Брагіна, Людмила Лазарівна; Шалигіна, Оксана Володимирівна; Покроєва, Яна Олександрівна; Воронов, Геннадій Костянтинович
    Склоемалева фрита подвійного призначення, що містить оксиди Na₂O, К₂О, СаО, В₂О₃, SiO₂, Fe₃O₃, MnO₂, NiO, CuO та F, яка відрізняється тим, що додатково містить оксиди кобальту СоО та барію ВаО при наступному співвідношенні компонентів, мас. %: (Na₂O+K₂O) 12,0-28,0; (СаО+ВаО) 1,1-11,6; В₂О₃ 11,0-28,0; SiO₂ 36,0-52,0; (Fe₃O₃+MnO₂+NiO+CoO+CuO) 0,5-12,5, F 0-4,0, при цьому (CoO+NiO) 0,5-1,2.
  • Ескіз
    Документ
    Вплив часових параметрів оксидування на склад та морфологію каталітичних покривів Al₂O₃·CoxOy
    (НТУ "ХПІ", 2018) Каракуркчі, Ганна Володимирівна; Сахненко, Микола Дмитрович; Ведь, Марина Віталіївна
    Досліджено процес формування змішаних оксидних покривів на висококремністому сплаві алюмінію у кобальтовмісному дифосфатному електроліті методом плазмово-електролітичного оксидування. Хронограми напруги формування дослідженої системи мають класичний вид із розділенням на характеристичні області. Показано, що неоднорідність хімічного складу АЛ25 зумовлює витрату частини анодного струму на гомогенізацію оброблюваної поверхні, що відображається у мінімізації вмісту легувальних компонентів на початковому етапі обробки. Встановлено, що приріст відносної маси сформованого шару змішаних оксидів Al₂O₃·CoxOy є функцією часу. Залежність має екстремальний характер із максимумом на 55 хв. Хімічний склад та морфологія поверхні утворюваного оксидного шару залежать від часу оксидування. Вміст каталітичного компоненту в поверхневих шарах варіюється від 0,2 до 23,3 ат. % при збільшенні часу обробки від 10 до 60 хв. Максимальна інкорпорація кобальту до складу оксидного шару відбувається при ПЕО протягом 35-50 хв, при цьому вміст кремнію у поверхневих шарах не перевищує 2 ат. %, що є сприятливим для каталітичних властивостей одержаного матеріалу. Включення кобальту візуалізується вкрапленнями синьо-фіолетового кольору в місцях горіння мікродугових розрядів. Сформований змішаний шар оксидів алюмінію та кобальту характеризуються розвиненою мікроглобулярною структурою, утвореною конгломератами сфероїдів із середнім розміром 1-2 мкм. Нанесений оксидний шар складається із α-Al₂O₃ з інкорпорованими фазами Co₃O₄. Наявність аморфного гало зумовлено формуванням структури у нерівноважних умовах. Сукупність виявлених факторів є передумовою високих каталітичних властивостей одержаних покривів. Перспективною сферою застосування систем Al₂O₃·CoxOy є внутрішньоциліндровий каталіз у двигунах внутрішнього згоряння.