Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
4 результатів
Результати пошуку
Документ Building the Semantic Similarity Model for Social Network Data Streams(Institute of Electrical and Electronics Engineers, 2018) Petrasova, S. V.; Khairova, N. F.; Lewoniewski, WlodzimierzThis paper proposes the model for searching similar collocations in English texts in order to determine semantically connected text fragments for social network data streams analysis. The logical-linguistic model uses semantic and grammatical features of words to obtain a sequence of semantically related to each other text fragments from different actors of a social network. In order to implement the model, we leverage Universal Dependencies parser and Natural Language Toolkit with the lexical database WordNet. Based on the Blog Authorship Corpus, the experiment achieves over 0.92 precision.Документ Метод автоматичного визначення семантично близьких фрагментів новинних текстів(Національний технічний університет "Харківський політехнічний інститут", 2019) Петрасова, Світлана Валентинівна; Галкіна, Яна Романівна; Мануйлов, Ілля Олександрович; Бородіна, Олександра Русланівна; Швець, Софія ІгорівнаСкладність семантичного аналізу текстової інформації, що міститься в новинних повідомленнях, визначається багатозначністю і синонімічністю, які властиві мові на всіх рівнях її представлення, що, перш за все, впливає на визначення смислово ї близькості мовних одиниць. Виявлення семантично близьких фрагментів текстів або перефразувань є актуальною проблемою у таких наукових напрямках як семантичний пошук інформації, видобування інформації, машинний переклад, визначення порушень авторських прав і т.п. , крім того широко використовується при рерайтингу. У статті проаналізовано основні проблеми рерайтинга, зокрема перефразування синтаксичних одиниць тексту зі збереженням смислового навантаження. Розглянуто сучасні методи визначення семантичної близькості слів, вказано основні переваги та недоліки. Запропоновано метод автоматичного виявлення синонімічних фрагментів новинних текстів на основі використання WordNet та розроблених синтаксичних правил, які зберігають інформацію про граматичні характеристики слів. Перевагою даного методу є те, що аналізується як граматична структура мови, так і смисл слів. Досліджуваний корпус представлено новинними текстами інформаційного агентства Reuters, служб CNN і BBC World News. Запропонований метод ідентифікації семантично зв’язних фрагментів тексту дозволяє виявити спільний інформаційний простір актуальних новин та може використовуватися для ефективного визначення близьких за змістом текстів в інформаційно-пошукових, експертних, аналітичних інформаційних системах. Вирішення завдання автоматичного визначення семантичної близькості може застосовуватися при автоматизованій побудові онтологій по тексту, для розширення існуючих і створення нових тезаурусів.Документ Extraction of Semantic Relations from Wikipedia Text Corpus(2019) Shanidze, O.; Petrasova, S. V.This paper proposes the algorithm for automatic extraction of semantic relations using the rule-based approach. The authors suggest identifying certain verbs (predicates) between a subject and an object of expressions to obtain a sequence of semantic relations in the designed text corpus of Wikipedia articles. The synsets from WordNet are applied to extract semantic relations between concepts and their synonyms from the text corpus.Документ Method for Paraphrase Extraction from the News Text Corpus(2019) Manuilov, Illia; Petrasova, S. V.The paper discusses the process of automatic extraction of paraphrases used in rewriting. The researchers propose the method for extracting paraphrases from English news text corpora. The method is based on both the developed syntactic rules to define phrases and synsets to identify synonymous words in the designed text corpus of BBC news. In order to implement the method, Natural Language Toolkit, Universal Dependencies parser and WordNet are used.