Вісники НТУ "ХПІ"

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494


З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.

Переглянути

Результати пошуку

Зараз показуємо 1 - 5 з 5
  • Ескіз
    Документ
    Аналітичний розв’язок задачі пружного удару конуса по півпростору
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Ольшанський, Василь Павлович; Ольшанський, Станіслав Васильович
    З використанням основних положень теорії Г. Герца про механічний удар твердих тіл розглянуто динамічну взаємодію пружного конуса з пружним півпростором, обмеженим плоскою поверхнею. Досліджено випадок, коли вісь конуса обертання перпендикулярна до границі півпростору, а початковою точкою контакту тіл є вершина конуса. Для опису місцевих деформацій тіл в зоні їх взаємодії використано відомий розв’язок вісесиметричної статичної контактної задачі теорії пружності, побудований І. Я. Штаєрманом. Задача співудару тіл зведена до диференціального рівняння другого порядку з квадратичною нелінійністю. Одержано дві форми аналітичного розв’язку цієї нелінійної задачі Коші. В першій використано Ateb-синус, а в другій – еліптичний косинус. Встановлено рівнозначність отриманих форм розв’язку, тобто можливість заміни однієї форми на іншу. Для обчислення значень Ateb-синуса методом лінійної інтерполяції подана спеціальна таблиця, а також запропонована аналітична апроксимація його елементарними функціями. Показана узгодженість результатів, до яких призводять ці два способи наближеного розрахунку значень Ateb-синуса. Виведена також наближена формула для обчислення значень еліптичного косинуса і підтверджена її вірогідність. За результатами розв’язання задачі удару отримано формули, що описують зміну у часі: зближення центрів мас тіл, сили ударної взаємодії, радіуса кругової площадки контакту та контактного тиску. Відзначено, що тиск нескінченний в центрі площадки, де вершина конуса контактує з півпростором. Проведено порівняння результатів, до яких призводять дві аналітичні форми розв’язку та числове комп’ютерне інтегрування диференціального рівняння стискання тіл, підданих удару. Встановлена гарна узгодженість числових результатів, одержаних різними способами. Досліджено вплив кута конусності на основні параметри динамічної взаємодії тіл. Показано, що збільшення кута конусності тіла, яке вдаряє, призводить до зменшення максимального динамічного стискання тіл і тривалості їх взаємодії та до зростання максимума сили удару при сталому значенні її імпульсу. Наведено числовий приклад розрахунку, де матеріалом конічного тіла вибрано сталь, а матеріалом нерухомого півпростору – гуму. Задачі такого типу виникають при розрахунках параметрів удару куска мінеральної сировини по футерованому гумою валку вібраційного класифікатора.
  • Ескіз
    Документ
    Динаміка осцилятора з жорсткою характеристикою пружності при дії силового імпульса
    (НТУ "ХПІ", 2018) Ольшанський, Василь Павлович; Ольшанський, Станіслав Васильович
    Розглянуто рух осцилятора з показником нелінійності 3/2 при дії ступінчастого та прямокутного імпульсів. Побудовано аналітичний розв'язок нелінійного диференціального рівняння другого порядку, де для розрахунку переміщень задіяно періодичні Ateb-функції та еліптичний косинус Якобі. Встановлено, що при навантаженні осцилятора миттєво прикладеною сталою силою коефіцієнт динамічності дорівнює (2,5)2/3. При дії на осцилятор прямокутного силового імпульсу коефіцієнт динамічності залежить від тривалості імпульсу, але не перевершує (2,5)2/3. Визначено такі тривалості, за яких розвантажений осцилятор має найбільшу та найменшу амплітуди коливань. Для спрощення розрахунків, з використанням одержаних розв'язків задачі Коші, складено таблиці, задіяних спеціальних функцій. Наведено приклади розрахунків, які підтверджують вірогідність виведених формул.
  • Ескіз
    Документ
    Коливання квадратично-нелінійного осцилятора, спричинені імпульсним навантаженням
    (НТУ "ХПІ", 2017) Ольшанський, Василь Павлович; Ольшанський, Станіслав Васильович
    Розглянуто механічні коливання нелінійного осцилятора, у якого відновлююча сила пропорційна квадрату деформації пружини. Рух спричинений або миттєво прикладеною силою сталої величини або прямокутним силовим імпульсом скінченної тривалості. Побудовано два варіанти аналітичного розв’язку нелінійної задачі Коші для неоднорідного диференціального рівняння другого порядку. В першому переміщення осцилятора у часі виражено через еліптичний косинус Якобі, що дає можливість обчислювати їх за допомогою відомих таблиць. У другому для розрахунку переміщень, задіяно Ateb-синус. Запропоновано апроксимації, які з похибкою меншою одного відсотка, подають Ateb-синус в елементарних функціях. Показано, що коефіцієнт динамічності у розглянутого осцилятора менший двох. Він залежить від тривалості дії прямокутного силового імпульсу. Знайдена тривалість дії сили, коли досягається максимальний ефект розгойдування вільних коливань розвантаженого осцилятора. Вона залежить не тільки від параметрів осцилятора, а й від значення прикладеної сили, що не властиво лінійним системам. Наведено приклади розрахунків та відповідні графіки.
  • Ескіз
    Документ
    Про коливання осцилятора з кубічно-нелінійною жорсткістю
    (НТУ "ХПІ", 2017) Ольшанський, Василь Павлович; Бурлака, Володимир Васильович; Сліпченко, Максим Володимирович; Малець, Ольга Миколаївна
    Розглянуто вільні коливання системи з одним ступенем вільності за умови, що відновлююча сила пружини пропорційна кубу її деформації. Задіяно дві форми аналітичного розв’язку нелінійного диференціального рівняння. В першій формі розв’язок виражено через еліптичний косинус, а в другий – через періодичні Ateb-функції. Складено таблиці для обчислень значень цих функцій і побудовано в безрозмірних координатах графіки, які спрощують розрахунки переміщень осцилятора у часі. Виведено формули для обчислення періодів коливань при наданні осцилятору початкового відхилення від положення рівноваги або початкової швидкості (миттєвого імпульса) в цьому положенні. Наведено приклади розрахунків з використанням відомих таблиць неповного еліптичного інтеграла першого роду та з використанням складеної таблиці періодичних Ateb-функцій.
  • Ескіз
    Документ
    Коливання кубічно нелінійного осцилятора, спричинені імпульсним навантаженням
    (НТУ "ХПІ", 2017) Ольшанський, Василь Павлович; Ольшанський, Станіслав Васильович
    Розглянуто рух нелінійного осцилятора з кубічною характеристикою пружності, спричинений миттєво прикладеною сталою силою або прямокутним силовим імпульсом скінченної тривалості. Побудовано два варіанти аналітичного розв’язку нелінійного диференціального рівняння другого порядку. У першому варіанті переміщення осцилятора у часі виражено через еліптичний косинус, а в другому для розрахунку переміщення задіяно Аteb-синус. З метою спрощення розрахунків, запропоновано компактні апроксимації, які з похибкою до одного відсотка виражають Аteb-синус через елементарні функції. Встановлено, що коефіцієнт динамічності системи при дії миттєво прикладеної сили дорівнює ∛4< 2 .. У випадку навантаження осцилятора прямокутним імпульсом коефіцієнт динамічності залежить від тривалості дії імпульса і теж залишається меншим двох. Знайдена тривалість імпульса, коли буде максимальна амплітуда вільних коливань, спричинених імпульсом. Вона залежить не лише від власних параметрів осцилятора, а й від величини прикладеної сили, чого немає в лінійних системах. Наведено приклади розрахунків та відповідні графіки.