Вісники НТУ "ХПІ"

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494


З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Математичне моделювання в комп'ютерній томографії з використанням нових інформаційних операторів
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Першина, Юлія Ігорівна; Пташний, Олег Дмитрович
    Досліджуються методи відновлення внутрішньої структури об’єкта з використанняи (м) нових інформаційних операторів, що розроблені українським науковцем професором Литвиним О.М., а саме – інтерлінація(її) та інтерфлетація (її). Оператори інтерлінації та інтерфлетації відновлюють функції (можливо, наближено) за відомими їх слідами на даній системі прямих та площин відповідно. В роботі наводиться розв’язання тривимірної задачі комп’ютерної томографії з використанням оператора інтерфлетації функції. В якості експериментальних даних виступають томограми, отримані з реально діючого комп’ютерного томографу, та рівняння площин, на яких ці томограми лежать. В роботі розглядається задача відновлення коефіцієнта поглинання всередині тривимірного об’єкту за його томограмами, що лежать на системі трьох груп паралельних площин, які не обов’язково є перпендикулярними координатним осям. Крім того, будується оператор інтерфлетації на системі площин, кожна з яких не обов’язково перетинається з усіма іншими. Також розробляється метод відновлення внутрішньої структури тривимірного тіла, який використовує чотири томограми та будується за допомогою інтерфлетації функцій трьох змінних. Крім того, представляються загальні види щільностей або коефіцієнтів поглинання об’єктів, які описуються функціями, що точно відновлюються за допомогою вказаної інформації. В роботі будується метод відновлення внутрішньої структури тіла з використанням оператора мішаної апроксимації поліномами Бернштейна. Цей метод рекомендується використовувати в тих випадках, коли експериментальні дані (характеристики томограм – геометричні параметри площини, на якій лежить томограма, а також зображення на томограмах) задані з похибкою, і коли класичні оператори інтерполяції та інтерфлетації не згладжують дані, а повторюють всі похибки в експериментальних даних. Далі розроблені нові інформаційні оператори використовуються для відновлення динамічного тіла. В даній статті розв’язується задача двовимірної комп’ютерної томографії не тільки з використанням нових інформаційних операторів, але й з урахуванням неоднорідності внутрішньої структури досліджуваного тіла. Усі запропоновані методи мають високу точність.
  • Ескіз
    Документ
    Відновлення розривної функції двох змінних різними інформаційними операторами з використанням трикутних елементів
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Першина, Юлія Ігорівна
    Досліджуються методи побудови математичних моделей розривних функцій двох змінних з використанням різної інформації про них: односторонні значення в точках та односторонні сліди вздовж заданої системи ліній. Розглядається випадок, коли область визначення шуканої функції тріангульована прямокутними трикутниками. Якщо застосовувати інтерполяційні або апроксимаційні методи наближення, то для їх побудови повинні бути задані значення функції в заданих точках;якщо ж застосовувати інтерлінаційні методи – сліди шуканої функції вздовж заданої системи ліній. В роботі будуються розривний інтерполяційний та апроксимаційний сплайни для наближення розривної функції двох змінних із заданими односторонніми значеннями в заданій системі точок (в нашому випадку, в вершинах прямокутних трикутників), доводяться теореми про оцінку похибки наближення побудованими розривними конструкціями. Також в роботі будується розривний інтерлінаційний сплайн, в якому використовується зовсім інша інформація про розривну функцію – односторонні сліди вдовж заданої системи ліній (в нашому випадку, вздовж сторін прямокутних трикутників). Інтерлінація функцій може знайти широке застосування в автоматизації проектування корпусів літаків, автомобілів; під час отримання і обробки результатів гідролокації та радіолокації, при вирішенні задач компʼютерної томографії, в цифровій обробці сигналів і в багатьох інших областях. В статті також доводяться теореми про інтегральний вигляд залишку та про оцінку похибки наближення побудованим розривним оператором інтерлінації. Наводяться обчислювальні експерименти, які порівнюють результати наближення розривної функції двох змінних різними інформаційними операторами з використанням трикутних елементів. Надалі планується застосувати побудовані оператори розривної апроксимації та інтерлінації для вирішення двовимірної задачі компʼютерної томографії з суттєвим використанням неоднорідності внутрішньої структури тіла, яку необхідно відновити.
  • Ескіз
    Документ
    Наближення розривних функцій двох змінних методом мінімаксу
    (НТУ "ХПІ", 2018) Першина, Юлія Ігорівна; Черногор, Тетяна Тимофіївна; Саприкін, Сергій Олександрович
    Запропоновано метод, за допомогою якого можна наблизити функцію двох змінних з розривами першого роду розривним білінійним сплайном, використовуючи метод мінімаксу. Вважається, що розриви функції, яку наближуємо, лежать на прямих, паралельних осям координат. В подальшому планується узагальнити цей метод на випадок, коли вузли сплайну не співпадають з точками розриву функції. Запропонований метод можна буде використати для відновлення внутрішньої структури об'єктів, що мають різну щільність, в медичних, геологічних, космічних та інших дослідженнях.