Вісники НТУ "ХПІ"

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494


З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Публікація
    Синтез згорткових нейронних мереж та довгої короткочасної пам’яті для детектування профілеративної ретинопатії
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Прочухан, Дмитро Володимирович
    Досліджено ефективність комбінації згорткових нейронних мереж та довгої короткочасної пам’яті в діагностиці профілеративної ретинопатії. Розглянуто способи синтезу вказаних видів мереж. Наведено переваги використання згорткової нейронної мережі ResNeXt-101 у порівнянні з ResNet-101. Розроблено нейромережеву модель, що синтезує вказану мережу з мережею довгої короткочасною пам’яті. Проведено навчання моделі. Наведено механізми функціонування вказаної моделі. За допомогою розробленої моделі розв’язана задача детектування профілеративної ретинопатїї. Отримано високі показники точності класифікації.
  • Ескіз
    Публікація
    Нейромережеве моделювання в реалізації системи визначення ураження сітківки ока діабетичного походження
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Прочухан, Дмитро Володимирович
    З метою визначення стадії ураження сітківки ока діабетичного походження застосовано механізми машинного навчання. Обґрунтовано використання згорткової нейронної мережі DenseNet для якісного розпізнавання і сегментації зображень. Проведено модифікацію мереж DenseNet-121, DenseNet-169 і DenseNet-201 шляхом додавання додаткових шарів. Розроблено програмні механізми обробки зображень за допомогою розмиття Гауса, видалення чорних рамок і мінімізації впливу зміни положення зображень на якість розпізнавання. Здійснено побудування і навчання моделі. Отримано високі показники точності розпізнавання. Для мережі DenseNet-201 отримано показник 97.9%, що переважає показники мереж DenseNet-121 і DenseNet-169.