Вісники НТУ "ХПІ"

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494


З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Инвертирование линейных динамических систем в среде квазигармонических сигналов
    (НТУ "ХПИ", 2018) Куценко, Александр Сергеевич; Товажнянский, Владимир Игоревич
    Методы обращения динамических систем нашли широкое распространение для решения задач управления механическими и электрическими системами. Инвертирование динамических систем является эффективным способом реализации процессов управления по возмущению, а также в комбинированных системах управления с прогнозирующей моделью. При решении задач обращения возникает ряд трудностей, связанных с высокой чувствительностью результатов по отношению к точности задания параметров математической модели объекта, неустойчивостью при управлении неминимально-фазовыми объектами, нарушении условий физической реализуемости. В работе предлагается приближенный метод решения задачи обращения линейных стационарных динамических систем во многом свободный от указанных недостатков. Рассматриваются математические модели линейных динамических систем в форме "вход-выход", удовлетворяющие требованиям асимптотической устойчивости, а также условию равенства размерностей векторов входа и выхода. В основе метода лежит представление входных и выходных сигналов их приближениями в линейном пространстве квазигармонических функций времени. Особенностью предложенного метода обращения динамических систем является представление многомерных многочленов в виде произведения прямоугольных матриц на вектор степеней времени. Такое представление позволило свести большинство постановок задач обращения к решению линейных систем матричных алгебраических уравнений. Компьютерная реализация, предложенного подхода к обращению линейной системы, разработана для "квадратных" линейных скалярных систем в условиях квазигармонических сигналов и содержит блоки аппроксимации задания по выходу, формирования матриц линейных систем и правых частей линейных алгебраических уравнений, оценку числа обусловленности решения линейной системы и блок сравнения результата обращения с заданием на основе непосредственного интегрирования дифференциальных уравнений математической модели.