Вісники НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494
З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.
Переглянути
3 результатів
Результати пошуку
Документ Оптимізація вибору ступіня складності моделі двигуна постійного струму для системи з використанням нейронної мережі(Національний технічний університет "Харківський політехнічний інститут", 2023) Воробйов, Богдан Віталійович; Сенченко, Сергій Олександрович; Рибаков, Вадим Костянтинович; Ліхно, Ярослав Владленович; Хань, ЛюПобудовано математичну та комп’ютерну модель системи керування моментом двигуна постійного струму з незалежним збудженням за допомогою нейроконтролера NARMA 2. NARMA – нелінійна авторегресійна модель ковзного середнього є однією з базових структур дискретної та нелінійної моделі. Завдання полягало в проведенні порівняльного аналізу роботи системи керування на основі нейроконтролера з використанням моделі об'єкта різного ступеня складності. Для експерименту було побудовано три моделі об'єкта з різним ступенем деталізації, а отже і надійності об'єкта. Повна модель включає модель двигуна постійного струму з незалежним збудженням, яка враховує всі основні параметри машини постійного струму, параметри внутрішнього тертя, кола збудження і т. д. Спрощена модель є лінійною апроксимацією двигуна постійного струму системою другого порядку, яка враховує як механічні, так і електричні постійні часу. Найпростіша модель є лінійною апроксимацією двигуна постійного струму аперіодичною ланкою першого порядку, яка враховує лише механічну постійну часу. Нейроконтролер був навчений за допомогою наведених вище моделей об'єктів та проведено експеримент, щоб опрацювати еталонний сигнал крутного моменту системою. Для кожного з трьох випадків навчання нейроконтролера було встановлено на 1000 епох, так як подальше підвищення продуктивності навчання є непотрібним через величезні втрати часу на обчислення. Було використано нейроконтролер NARMA-L2, який ще називають управлінням лінеаризації зворотного зв’язку. Цей контролер може бути реалізований за допомогою попередньо ідентифікованої моделі об’єкта NARMA-L2. Нейронні мережі, які навчені на спрощених моделях об’єктів не враховують більшість електричних процесів у двигуні постійного струму, особливо обмотка збудження взагалі не моделюється. Отримані результати порівнювали з використанням нейроконтролера як регулятора крутного моменту. Подальші дослідження в цьому напрямку передбачають дослідження необхідної обчислювальної потужності для мікропроцесорної реалізації нейроконтролера.Документ Система запобігання буксування електромобіля на основі контролера нейронної мережі(Національний технічний університет "Харківський політехнічний інститут", 2023) Воробйов, Богдан Віталійович; Сенченко, Сергій Олександрович; Пшеничников, Дмитро Олексійович; Ліхно, Ярослав Владленович; Хань, ЛюПобудовано функціональну схему системи запобігання буксування, побудовано математичну модель асинхронного електроприводу електромобіля, синтезовано нейрорегулятор. Асинхронний двигун вибраний по методу еквівалентної потужності, а за базову циклограму руху взято стандартний міський цикл WLT. Математична модель механічної частини побудована з урахуванням можливості моделювання пробуксування кожного з провідних коліс окремо з різними коефіцієнтами зчеплення. Модель складається з силового перетворювача, батареї, регулятора швидкості, регулятора моменту, асинхронного двигуна, гальмівного резистора, блоку формування задаючих сигналів, блоку механіки і блоків вимірювання. Внутрішня система управління побудована на базі DTC векторного управління з використанням блоків MatlabВ даній роботі використовується блок управління NARMA-L2, який міститься в Neural Network ToolboxTM. Було побудовано спрощену модель (модель об'єкта), вибрано параметри нейронної мережі, такі як кількість прихованих шарів, дискретизація, кількість вибірок і кількість епох для навчання нейронної мережі. Нейронна мережа навчалася з урахуванням лінеаризованої моделі об'єкта, що відображає якісний вид реальних процесів у системі. Не зважаючи на лінеаризацію системи, вихідний сигнал із мінімальною помилкою (близько 1%) відповідає вхідному. Проведено аналіз одержаних результатів навчання мережі. Проведено моделювання роботи системи без пробуксування та пробуксування одного з коліс. Результати моделювання порівнюються з помилкою, отриманою під час навчання нейронної мережі, а саме розбіжністю вихідних і вхідних сигналів. Модель не враховує бічний занос, тому можна спостерігати лише невідповідність швидкостей коліс та лінійну зміну швидкості електромобіля. Показано можливість використання тягового електроприводу з використанням методу інтелектуальних нейронних мереж у системі безпеки руху електромобіля. Зроблено висновок про працездатність та ефективність системи з використанням нейроконтролера для запобігання одного з можливих режимів прослизання.Документ Динамічний аналіз нових конструкцій верстатів – роботів(НТУ "ХПІ", 2017) Ковалевська, Олена СергіївнаПропонується для системного динамічного моделювання мехатронних систем використовувати комплексну платформу Lab AMESim. При занесенні всіх даних і побудові ескізу отримана симуляції модель. Відпрацювання переміщень платформи налаштовано в командному блоці, що пов'язаний з вихідними параметрами всіх блоків та керується кроковими електродвигунами приводів. Показано, що платформа, завдяки використанню восьми опорних точок рухається плавно і не змінює свого положення щодо осі z, тобто взаємодія восьми приводів працює злагоджено.