Долотов, А. І.2017-09-252017-09-252009Долотов А. І. Гібридна система обчислювального інтелекту, що самонавчається, на основі спайк-нейронної мережі / А. І. Долотов // Вестник Нац. техн. ун-та "ХПИ" : сб. науч. тр. Темат. вып. : Информатика и моделирование. – Харьков : НТУ "ХПИ", 2009. – № 43. – С. 62-67.https://repository.kpi.kharkov.ua/handle/KhPI-Press/31528Розглянуто гібридні системи обчислювального інтелекту, що самонавчаються, на основі спайк-нейронної мережі. Запропоновано узагальнену архітектуру такої системи, що дозволяє виконувати ієрархічну нечітку кластеризацію даних. На основі узагальненого Геббового правила самонавчання запропоновано алгоритм навчання гібридної системи. Синтезовану гібридну систему викладено у термінах Лапласового перетворення.The self-learning hybrid systems of calculable intellect are considered on the basis of spiking neural network. Generalized architecture of such system that allows of hierarchical fuzzy clustering is proposed. Based on the generalized Hebb rule of self-learning, a learning algorithm of the hybrid system is proposed. Synthesized architecture of the hybrid system is stated in terms of the Laplace transform.ukалгоритмиметоди обчислювального інтелектуштучні нейроні мережікластерізація данихLaplace transformHebb ruleГібридна система обчислювального інтелекту, що самонавчається, на основі спайк-нейронної мережіSelf-learning hybrid system of computational intelligence based on spiking neural networkArticle