Onyshchenko, KostiantynDaniiel, Yana2023-07-202023-07-202023Onyshchenko K. Using long short-term memory networks for natural language processing / K. Onyshchenko, Ya. Daniiel // Вісник Національного технічного університету "ХПІ". Сер. : Системний аналіз, управління та інформаційні технології = Bulletin of the National Technical University "KhPI". Ser. : System analysis, control and information technology : зб. наук. пр. – Харків : НТУ "ХПІ", 2023. – № 1 (9). – С. 89-96.https://repository.kpi.kharkov.ua/handle/KhPI-Press/67289The problem of emotion classification is a complex and non-trivial task of language interpretation due to the natural language structure and its dynamic nature. The significance of the study is in covering the important issue of automatic processing of client feedbacks, collecting opinions and trendcatching. In this work, a number of existing solutions for emotion classification problem were considered, having their shortcomings and advantages illustrated. The evaluation of performance of the considered models was conducted on emotion classification on four emotion classes, namely Happy, Sad, Angry and Others. The model for emotion classification in three-sentence conversations was proposed in this work. The model is based on smileys and word embeddings with domain specificity in state of art conversations on the Internet. The importance of taking into account the information extracted from smileys as an additional data source of emotional coloring is investigated. The model performance is evaluated and compared with language processing model BERT (Bidirectional Encoder Representations from Transformers). The proposed model achieved better performance at classifying emotions comparing to BERT (having F1 score as 78 versus 75). It should be noted, that further study should be performed to enhance the processing by the model of mixed reviews represented by emotion class Others. However, modern performance of models for language representation and understanding did not achieve the human performance. There is a variety of factors to consider when choosing the word embeddings and training methods to design the model architecture.Проблема класифікації емоцій є складним та нетривіальним завданням інтерпретації мови через структуру природної мови та її динамічний характер. Актуальність дослідження полягає в охопленні важливої проблеми автоматичної обробки відгуків клієнтів, збирання думок та виявлення тенденцій. У цій роботі розглянуто ряд існуючих рішень для проблеми класифікації емоцій, де продемонстровано їхні недоліки та переваги. Оцінка продуктивності розглянутих моделей була проведена на класифікації емоцій чотирьох класів: Happy, Sad, Angry та Other. У цій роботі запропоновано модель для класифікації емоцій в трирядкових розмовах. Модель базується на емодзі та представленнях слів зі специфікою області сучасних розмов в Інтернеті. Досліджується важливість врахування інформації, отриманої зі емодзі як додаткового джерела даних з емоційним забарвленням. Оцінено продуктивність моделі та порівняно її з мовною моделлю BERT (Bidirectional Encoder Representations from Transformers) для класифікації емоцій. Запропонована модель показала кращу продуктивність у класифікації емоцій порівняно з BERT (з F1-оцінкою 78 порівняно з 75). Слід зазначити, що потрібні додаткові дослідження для поліпшення обробки моделлю змішаних відгуків, що представлені класом емоцій "Other". Однак, сучасна продуктивність моделей для представлення та розуміння природної мови не досягла рівня людини. Є різноманітні фактори, які необхідно враховувати при виборі представлень слів та методів навчання для проектування архітектури моделі.ennatural language processingneural networknatural languagelong short-term memory networkstext classificationemotional text analysisобробка природної мовинейронна мережаприродна мовамережі довготривалої пам’ятітекстова класифікаціяемоційний аналіз текстуUsing long short-term memory networks for natural language processingВикористання мереж довготривалої пам’яті для обробки природної мовиArticlehttps://doi.org/10.20998/2079-0023.2023.01.14https://orcid.org/0000-0002-7746-4570https://orcid.org/0000-0002-3895-0744