Вісник № 01. Гідравлічні машини та гідроагрегати

Постійне посилання зібрання

Переглянути

Нові надходження

Зараз показуємо 1 - 15 з 15
  • Документ
    Особенности распределения скорости и давления водяной струи на выходе из пожарного ствола или насадки
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Стась, Сергей Васильевич; Яхно, Олег Михайлович; Лаврухин, Егор Валериевич
    Важнейшими элементами систем генерирования огнетушащих потоков являются устройства формирования струй – пожарные стволы (либо насадки). Управлять струями за пределами пожарных стволов не представляется возможным. Поэтому особое внимание инженеров-конструкторов должно быть обращено на создание таких устройств, которые бы позволили наилучшим образом обеспечивать получение нужных характеристик огнетушащих струй в зоне очага пожара еще на этапе их формирования в стволах. Определяющими характеристиками устройств формирования струй в этом случае есть их геометрические конструктивные параметры, а также расход жидкости, давления на входе и выходе ствола, вид получаемой струи, ее дальность, особенности используемых жидкостей. На начальное разрушение водяных струй существенное влияние оказывают вихри, которые образуются вследствие турбулентности. Также разрушение водяных струй может быть следствием изменения средних скоростей в пограничных слоях вдоль поверхностей при движении струй в газах. Водяная струя на выходе из ствола не имеет твердых границ, в ней формируется гидродинамический начальный участок за счет перераспределения скоростей от максимального в ядре струи до минимального на поверхности струи. При определенных условиях можно утверждать о некоем подобии гидродинамических начальных участков во входной зоне ствола и на его выходе. Длина гидродинамического начального участка за пределами пожарного ствола может быть определена подобно длине гидродинамического начального участка во входной зоне ствола. Фактически можно получить описание для поля скоростей движения жидкости по всей длине струеформирующего канала внутри пожарного ствола и за его пределами в компактной части струи. Качество проектирования пожарных стволов и насадок с круговым профилем поперечного сечения внутреннего струеформирующего канала непосредственно зависит от точности определения длины гидродинамического начального участка, что позволяет получить устойчивое течение жидкости на выходе из пожарного ствола без колебаний и пульсаций скорости и давления.
  • Документ
    Збільшення ресурсу і електричної потужності останнього ступеню парової турбіни при супергідрофобному покритті її соплових апаратів
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Шубенко, Олександр Леонідович; Сафонов, Володимир Йосипович; Бабак, Микола Юрійович; Сенецький, Олександр Володимирович; Євич, Микола Леонідович; Бояршинов, Олексій Юрійович
    Проведено аналіз структури руху і утворення крупних крапель в міжлопатковому каналі парової турбіни. Отримано, що попадання крапель на поверхню лопаткового апарату призводить до виникнення плівки з наступним зривом потоку з вихідної кромки у вигляді крупних ерозійнонебезпечних крапель. Саме тому виникає задача оцінки можливості впровадження нанотехнологій на основі супергідрофобних покриттів для підвищення ефективності та надійності проточних частин парових турбін. Досліджувалась можливість використання супергідрофобних покриттів поверхонь напрямних апаратів вологопарових ступенів для підвищення якості проточної частини потужної парової турбіни. Проаналізовано сучасні підходи до нанесення супергідрофобних покриттів на металеві поверхні. Наведено загальну структуру ерозійно-стійкого покриття, що включає металеву матрицю, полімерний полісилоксановий наповнювач з активованих рівномірно розподілених по товщині гідрофобних частинок різної форми, в тому числі лускатих, і внутрішній ерозійно-стійкий шар. Розглянуто особливості фізичних процесів: змочуваності твердих поверхонь, течії вологої пари в турбіні, стан проблеми. Виконано оцінки з визначення впливу супергідрофобних покриттів, при нанесенні їх на сопловий апарат вологопарового ступеня, на втрати енергії та витрати пари у ступені турбіни. Уперше показано, що реалізація цієї пропозиції повинна привести до суттєвого зменшення розміру крапель вологи в проточній частині та, як наслідок, до збільшення ресурсу робочих лопаток і електричної генерації. Останнє відбувається за рахунок зменшення втрат енергії на тертя на соплових лопатках, при ударах крапель вологи та обтіканні робочих лопаток, а також падіння витрати пари при сепарації. Експертним оцінюванням параметрів, що визначають це зменшення втрат, прогнозовано обсяг додаткової генерації від впровадження супергідрофобних покриттів на соплах останнього ступеня турбіни К-325-23,5.
  • Документ
    Прогнозування режиму роботи багатоступеневого відцентрового насосу при реальних умовах експлуатації нафтогазових свердловин
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Шевченко, Наталія Григорівна; Шудрик, Олександр Леонідович; Фатєєва, Надія Миколаївна; Фатєєв, Олександр Миколайович; Пономарьов, Владислав Анатолійович
    У реальних умовах експлуатації нафтогазових свердловин продукцією заглибних насосів є суміш пластової нафти, води та газу – газорідинна суміш. Проведено інформаційний огляд роботи заглибних відцентрових насосів на реальні умови експлуатації. Розглянута математична модель сумісної роботи пласта, свердловини та заглибного насоса. Для прогнозування режиму роботи насоса у нафтової свердловини були розглянуті наступні задачі: визначення фізичних характеристик газорідинної суміші при відповідних термодинамічних умовах; розподіл тиску по свердловині від вибою до гирла та й у насосно-компресорних трубах; визначення оптимальної глибини установки насоса з урахуванням вхідного об'ємного вмісту газу; перерахунок енергетичних характеристик електропровідного відцентрового насоса на пластові умови експлуатації; визначення режиму сумісної роботи свердловини та електропровідного відцентрового насоса за фактичними даними роботи свердловини. За допомогою інтегрованого середовища розробки вільного програмного забезпечення Lazarus створено автономні модулі з графічним інтерфейсом. Вихідні дані можна ввести вручну або імпортувати із зовнішнього текстового файлу. Результати розрахунків представлені у вигляді графіків, а також є можливість вивести в файли для подальшого їх аналізу. Проведено адаптацію програмних модулів для умов експлуатації свердловин НГВУ «Охтирканафтогаз». Проведена оцінка впливу глибини установки насоса на режим роботи насоса та його енергетичні параметри. У роботі удосконалена математична модель визначення енергетичних характеристик багатоступеневого відцентрового насосу. Рух нафтогазової суміші у багатоступеневому насосі характеризується безперервним зростанням тиску й температури, зміною дійсної об'ємної фази газу, в'язкості, щільності уздовж насоса. У зв'язку із цим, для розрахунків енергетичних характеристик багатоступеневого насоса необхідно дотримуватися перерахування гідродинамічних параметрів потоку кожної ступені вздовж насосу. Прийнято, що процес розчинення газу аналогічний процесу розгазування. Проведено дослідження трьох варіантів компоновки ступенів заглибного відцентрового насоса, що дозволило отримати підвищення енергетичних показників насоса.
  • Документ
    Застосування методів математичного моделювання при чисельному дослідженні гідродинамічних характеристик високонапірної оборотної гідромашини
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Рєзва, Ксенія Сергіївна; Дранковський, Віктор Едуардович; Шевцов, Вадим Михайлович; Оспіщева, Лізавета Олександрівна
    Як випливає з Енергетичної програми України проектування та побудова гідроакумулюючих станцій є пріоритетним напрямком розвитку гідроенергетики України. Перспектива побудови Закарпатської ГАЕС потребує вирішення ряду питань дослідження та модернізації проточних частин високонапірних оборотних гідравлічних машин. У сучасних умовах роботи енергосистем гострою є проблема покриття пікових навантажень, що викликає необхідність приділяти більше уваги роботі оборотних гідромашини в турбінному режимі. При розробці проточних частин оборотних гідромашин широко використовуються математичні моделі опису робочого процесу, які ґрунтуються на різних ступенях його деталізації. В даній роботі розглядається опис робочого процесу на макро- та мікрорівнях, що дає можливість вирішувати комплекс задач в залежності від поставлених цілей. Результати чисельного розрахунку на макромоделях дозволяють проводити дослідження впливу геометрії окремих елементів проточної частини на гідродинамічні характеристики. У роботі, на першому етапі, застосований метод безрозмірних осереднених параметрів, який дозволяє на етапах проектування проточної частини нової оборотної гідравлічної машини або модернізації її вибрати оптимальну геометрію елементів проточної частини. Даний метод позитивно зарекомендував себе при чисельному дослідженні високонапірних оборотних гідравлічних машин на напори від 200 м до 500 м. При застосуванні даної математичної моделі – макрорівень, необхідно мати геометричні параметри лише в характерних перетинах проточної частини оборотної гідромашини. В ході роботи були досліджені три варіанти проточної частини високонапірної тихохідної оборотної гідромашини ОРО500-В-100. В результаті було визначено, яка геометрія елементів проточної частини значно впливає на гідродинамічні показники гідромашини. Було встановлено, що в підвідній частині (спіральної камери зі статором і направляючому апарату) найбільші значення гідравлічних втрат (до 65 % від загальних). Для другого та третього варіантів проточної частини були змінені параметри саме цих елементів. При зміні параметрів спіральної камери (збільшенні осередненого кута потоку на 10°) привело до збільшення гідравлічного ККД на 1,16 %. При зміні геометрії направляючого апарату – на 0,84 %. Для більш досконального дослідження першого варіанта оборотної гідромашини було проведене чисельне дослідження на мікрорівні за допомогою програми CFD (OpenFOAM), що дозволило отримати розподіл тисків та швидкостей в проточної частині в турбінному режимі при оптимальних значеннях витрати та обертів. Порівняльний аналіз отриманих результатів за різними моделями з результатами фізичного експерименту показав задовільну збіжність, що свідчить про доцільність застосування обраних методів для дослідження високонапірних оборотних гідромашин.
  • Документ
    Совершенствование рабочего процесса гидроагрегатов
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Потетенко, Олег Васильевич; Черкашенко, Михаил Владимирович; Яковлева, Людмила Константиновна; Дорошенко, Александр Владиславович; Черпаков, Никита Игоревич
    В статье представлены преимущества и единственные эффективные возможности использования для работы на пиковых нагрузках суточного регулирования предохраняя единую электроэнергетическую систему страны «от развала частоты» гидроагрегатов обладающих уникальными маневренными эксплуатационными свойствами и высокой надежностью эксплуатации. Рассмотрены основные задачи и этапы выполнения системы регулирования, обеспечивающей расширение надежной и высокоэффективной работы гидроагрегатов, оборудованных новыми типами гидротурбин с двухступенчатыми лопастными системами и подводящими органами в виде расположенных по кольцу перед рабочим колесом гидротурбинными специально спроектированными конфузорными сопловыми аппаратами новые конструктивные разработки, представляющие мировые достижения в области гидротурбостроения позволяют применять лопастные гидротурбины на напоры до 800–1000 м. с уникально высокими энергокавитационными и эксплуатационными показателям, а прямоточные на напоры вплоть до 230–300 м. Новые типы разработанных гидротурбин, защищенные более 20 патентами Украины, потребовали нового подхода к разработкам систем регулирования рабочим процессом подробно и поэтапно изложенных в настоящей работе. В работе рассмотрены новые подходы к управлению системами регулирования гидроагрегатов с рабочими колесами, оборудованными двухступенчатыми лопастными системами. Первый программный комплекс обеспечивает надежную частоту вращения гидроагрегата при резком изменении нагрузки в электрической сети. Параллельно с этим, с некоторым незначительным отставанием подключается второй программный комплекс, который на основе комбинаторной зависимости обеспечивает минимальные потери энергии и более надежные эксплуатационные показатели при значительном расширении зоны эксплуатации по расходам и напорам, более высокую, в 1,5–2 раза пропускную способность гидроагрегата. Все это впервые в мировой практике гидротурбостроения позволило создать надежные гидроагрегаты с высокими энергокавитационными показателями на напоры до 800–1000 м.
  • Документ
    Visualization of hydrodynamic processes in a two-pipe hydraulic shock absorber in the study of the cavitation transfer phenomenon
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Nochnichenko, Igor; Uzunov, Oleksandr; Belikov, Kostiantyn; Haletskyi, Oleksandr
    The work processes that occur in the chambers of a double-tube hydraulic shock absorber during its operation are considered, such as the flow of working fluid through the piston valve, which is caused by the pressure difference between the working chambers. When the working fluid was flowing in the valve-throttle tract, in throttle operation, where only calibrated holes are used, hydrodynamic cavitation was poorly developed, which corresponds to a piston speed of about 0,25 m/s. It should be noted that when operating in a valve mode of operation, when the liquid flows through the open valves, at critical and close to critical operating modes of the hydraulic shock absorber, developed hydrodynamic cavitation occurs. In this regard, the operating characteristic changes, due to the occurrence of a two-phase flow, which is due to the presence of air, which leads to a decrease in the resistance force and a deterioration in the efficiency of vibration damping by a hydraulic shock absorber. To ensure the expansion of the range of effective operation, the operating modes were precise in which hydrodynamic cavitation occurs. One of the effective methods for fixing the occurrence of hydrodynamic cavitation is the visualization of working processes in the chambers of a hydraulic shock absorber. An experimental stand was developed and a prototype was manufactured made it possible to carry out the necessary experimental studies and establish the operating modes and the depth of the occurrence of cavitation. The study of the piston valve operation by visualizing the flow in the "rebound" mode made it possible to obtain the dependences of the flow rate on the Reynolds number and temperature, presented in the pressure range of 1–4 MPa. The experimental study also takes into account the change in the viscosity of the liquid in the temperature range from 20 °C to 50 °C. The results of the experimental study showed the weakest elements of the piston valve, and their analysis made it possible to determine the critical parameters at which hydrodynamic cavitation occurs in the shock absorber. Research in the future will make it possible to modernize the design of the valve-throttle tract to prevent the premature occurrence of hydrodynamic cavitation, taking into account changes in the viscosity of the working fluid and operating conditions. As a result of expanding the range of effective operation and the development of a control law for the conductivity of the throttles, taking into account cavitation phenomena and changes in the rheological properties of the hydraulic shock absorber fluid, it will be possible to develop a technical solution that will significantly improve the efficiency of vibration damping and stabilize its performance.
  • Документ
    Использование методологии решения обратных задач для прогнозирования разрушения элементов энергетического оборудования
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Мацевитый, Юрий Михайлович; Повгородний, Владимир Олегович; Сафонов, Николай Александрович
    В статье предложен метод определения максимальной тепловой нагрузки по измеренному с определённой погрешностью температурному (термическому) напряжению путём решения обратной задачи термоупругости. Определение максимальной тепловой нагрузки точно так же, как и регулирование внешних и внутренних температурных и силовых нагрузок, при которых будут достигнуты температурные напряжения или перемещения в элементах конструкций в допустимых пределах, имеют существенное теоретическое значение и представляют собой большую практическую ценность. Целесообразным путём нахождения этих величин в функции времени и геометрических координат является решение обратных задач теплопроводности и термоупругости, т. е определение температурного поля, исходя из поля температурных напряжений. Для получения устойчивого решения обратной задачи термоупругости используется метод А. Н. Тихонова с эффективным поиском параметра регуляризации. Функционал А. Н. Тихонова отражает отклонение температурного напряжения, полученного в результате наблюдения, от рассчитанного на основе приближенного решения прямой задачи термоупругости методом конечных элементов. В этом функционале в качестве слагаемого к квадрату указанного отклонения используется стабилизирующий функционал с параметром регуляризации. Поиск параметра регуляризации осуществляется с помощью алгоритма, аналогичного алгоритму поиска корня нелинейного уравнения. Использование в методе функций влияния позволяет представлять температуру и температурное напряжение в зависимости от одного и того же вектора, что существенно облегчает реализацию итерационного процесса. Предложенный метод позволяет, не доводя объект исследования до разрушения, определять нагрузку, при которой он будет разрушен. Экономичность данного метода состоит в том, что его применение удешевляет сложные экспериментальные исследования технических объектов и исключает необходимость создания расчетно-аналитических методик, сопровождающих эти исследования. В то же время метод облегчает разработку алгоритмов для аналитического и численного решения ряда задач температурного управления. В частности, решая обратную задачу термоупругости, можно определить температурные поля элементов турбоустановок по замеренным в них температурным напряжениям. Что касается результатов проведенного исследования, то они могут быть использованы, как неотъемлемая часть проектирования других объектов энергетического машиностроения, а также для расчета их ресурса и выбора систем охлаждения.
  • Документ
    Зависимость коэффициента теоретического напора высоконапорной радиально-осевой турбины от режимных параметров
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Мараховский, Михаил Борисович; Гасюк, Александр Иванович; Панамарева, Ольга Борисовна; Ярошенко, Алексей Андреевич
    Взаимодействие потока жидкости с рабочим колесом характеризуется следующими интегральными параметрами: гидравлическим моментом на рабочем колесе, гидравлической мощностью и теоретическим напором. В работе с помощью методов теории размерностей осуществлен переход от размерных зависимостей к безразмерным соотношениям для соответствующих коэффициентов. В соответствии с опытными данными безразмерная циркуляция перед рабочим колесом для данной линии тока зависит только от угла потока за решеткой направляющего аппарата, т. е. от открытия направляющего аппарата. Из полученных зависимостей вытекает выражение для коэффициента теоретического напора от режимных параметров. В безразмерной форме полученные зависимости коэффициента теоретического напора от обобщенного безразмерного кинематического параметра KQ наиболее удобны для анализа энергетических характеристик рассматриваемой проточной части радиально-осевой гидротурбины. Кроме того, получено уравнение моментной характеристики гидротурбины также в безразмерной форме. Рассчитанные теоретические зависимости сравнены с экспериментальными данными для различных типов рабочих колес. Полученные результаты позволяют судить о возможности использования разработанных моделей для исследования энергетических качеств высоконапорных радиально-осевых турбин. Рассмотренные кинематические модели могут быть положены в основу упрощенных моделей рабочего процесса, используемых на начальных стадиях проектирования проточной части. Полученные зависимости построены исходя из решения осесимметричной задачи течения жидкости в проточной части. Из предварительного решения этой задачи для получения безразмерных энергетических характеристик используются коэффициенты А и В, учитывающие изменение меридианной скорости течения жидкости в характерных сечениях проточной части и учитывающих изменение картины течения в зависимости от режимных параметров. Найдена зависимость коэффициентов циркуляции и коэффициента теоретического напора пространственной решетки рабочего колеса от геометрических и режимных параметров. Эта зависимость может быть использована для поверочных расчетов (распределения меридиональных и окружных составляющих скорости, циркуляции) при проведении многовариантных расчетов в САПР.
  • Документ
    Динамічна нелінійна математична модель об'ємного гідропривода з машинним регулюванням
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Лур'є, Зіновій Якович; Самородов, Вадим Борисович; Аврунін, Григорій Аврамович; Цента, Євген Миколайович
    Мета – науковий пошук зниження коливань тиску і частоти обертання гідромотора в об'ємному гідроприводі, математична модель якого для режиму розгону і виходу на усталений режим, включає рівняння ККД гідромашин в повному діапазоні швидкостей і навантажень. Метод. Порівняльний аналіз динамічних характеристик об'ємного гідропривода на розроблених математичних моделях, що не враховують зміну ККД гідромашин і з урахуванням рівнянь змінного ККД. Розроблені математичні моделі включають імітаційний модуль пристрою управління похилим диском аксіальнопоршневого насоса, евристичний модуль стадійного зовнішнього навантаження з постійною і змінною складовими, і обчислювальний модуль двофазної робочої рідини. Одна з двох порівнюваних моделей містить розрахунок ККД гідромашин на основі теорії К. І. Городецького. Результати. Математична модель об'ємного гідропривода, в яку вводять рівняння для розрахунку ККД, виявляється більш інформативною та такою, що дає фактичні значення тиску і частоти обертання гідромотора, що дозволяють точно оцінити його вихідну потужність як один з найважливіших параметрів для споживача, тому її застосування є переважним. Отримані результати підтверджують необхідність зниження газовмісту в робочій рідині, що викликає коливання тиску в об'ємному гідроприводі та частоти обертання гідромотора, причому двофазна робоча рідина викликає більш суттєві коливання, ніж однофазна. Висновок. Результати проведених досліджень можуть бути використані при розробці нових об'ємних гідроприводів не лише з аксіальнопоршневими, але і з гідромашинами інших типів, і дозволяють аналізувати динамічні характеристики гідрофікованих машин різного призначення, а також в навчальному процесі з поглибленим вивченням студентами-магістрами об'ємних гідроприводів.
  • Документ
    Методики прогнозування низькочастотних пульсацій тиску у відсмоктуючій трубі гідротурбіни
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Кухтенков, Юрій Михайлович
    Наведено порівняння сучасних методик розрахунку низькочастотних джгутових пульсацій тиску у відсмоктуючій трубі з експериментом. Вібрації у проточній частині жорстколопатевих гідротурбін суттєво залежать від пульсацій тиску, які обумовлені рухом вихрових джгутів за робочими колесами у відсмоктуючій трубі. Силова взаємодія вихорів з елементами проточного тракту може призвести до серйозних аварій. Розглянуто зменшення низькочастотних пульсацій тиску, що сприяє підвищенню надійності і збільшення потужності гідроагрегатів. У більшості, вихрові джгути мають складну просторову гвинтову форму, тому для розрахунку пульсацій тиску треба використовувати просторові математичні моделі. Це можуть бути сучасні пакети програм гідродинаміки, які вирішують завдання механіки суцільного середовища і використовують рівняння Рейнольдса. Процес вирішення завдань в цьому випадку здійснюється за допомогою пакету прикладних програм CFD, що включає етапи: створення тривимірної моделі розглянутого об'єкта за допомогою системи САПР; побудова розрахункової сітки; вибір математичної моделі турбулентності; завдання граничних умов. З іншого боку, це можуть бути простіші моделі для нев'язкої рідини, що розглядаються у квазістаціонарній постановці. Наприклад, коли стінка відсмоктуючої труби моделюється вихровий поверхнею, що складається з тонких вихрових шнурів змінної інтенсивності, що мають форму спіралі. Швидкості, індуковані джгутами, розраховуються за формулами Кочіна М. Є; швидкості, індуковані вихровою поверхнею визначаються з граничних умов з рішення рівняння Фредгольма, а амплітуди пульсації тиску визначаються на основі інтеграла Бернуллі. У першому випадку для виконання задачі потрібні значні ресурси машинного часу, а похибка при розрахунку амплітуд пульсацій тиску становить до 10 % в порівнянні з експериментальними даними, у другому – 15–20 % при меншому час розрахунків. Результати розрахунків джгутових пульсацій тиску використовуються в розрахунках на міцність елементів проточної частини гідротурбіни з великими запасами по коефіцієнтам міцності, тому можливе використання в прогнозних розрахунках джгутових пульсацій тиску і більш простих моделей.
  • Документ
    Прогнозування енергетичних характеристик високонапірної радіально-осьової гідротурбіни з використанням програмного комплексу CFD
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Крупа, Євгеній Сергійович; Дмитрієнко, Ольга Вячеславівна; Тиньянова, Ірина Іванівна; Недовєсов, Владлен Олександрович
    В даний час розвиток пакетів прикладних програм для розрахунку задач обчислювальної гідроаеродинаміки досяг високого рівня ефективності, точності і гнучкості, з їх допомогою можна вирішувати самі різноманітні та складні задачі. Всі сучасні пакети програм обчислювальної гідроаеродинаміки вирішують завдання механіки суцільного середовища, використовуючи моделі, побудовані на основі рівнянь Нав'є-Стокса. В основу цих моделей входять три рівняння збереження: збереження маси, збереження імпульсу і збереження енергії. Було проведено чисельне моделювання просторового потоку високонапірної радіально-осьової гідротурбіни РО 310 для двох варіантів проточної частини – с робочим колесом, що має 15 лопатей (модифікація 1) та з 17 лопатями (модифікація 2), з використанням пакета прикладних програм OpenFOAM. Програмний комплекс OpenFOAM є одним з найбільш використовуваних продуктів, призначених для вирішення завдань гідродинаміки, що розповсюджуються за вільною ліцензією GPL (General Purpose License). Процес вирішення поставлених гідродинамічних задач за допомогою програмного комплексу CFD (Computational fluid dynamics) включає в себе наступні етапи: створення тривимірної моделі розглянутого об’єкта за допомогою системи автоматичного проектування; побудова розрахункової сітки з необхідними параметрами; вибір математичної моделі, яка найточніше описує робочий процес в проточних частинах гідромашин; вибір відповідної моделі турбулентності; завдання граничних умов. Приведено візуалізацію результатів чисельного дослідження двох модифікацій гідротурбіни РО 310-В100. Представлено методику розрахунку гідравлічних втрат в проточній частині гідротурбіни. Виконано аналіз результатів чисельного моделювання. Даний аналіз показав, що модифікація гідротурбіни з робочим колесом, що має 15 лопатей, краща по значенню ККД, ніж модифікація з 17 лопатями. Порівняння двох модифікацій проводилося виключно по значенням гідравлічного ККД гідротурбіни.
  • Документ
    Потери энергии в рабочем колесе при переходном и малорасходном режимах
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Котульская, Ольга Валериевна; Парамонова, Татьяна Николаевна; Сенецкая, Дарья Олеговна; Литвинова, Юлия Сергеевна
    Рассмотрен подход к определению потерь энергии в ступени большой веерности при её работе в малорасходном и переходном режимах. В настоящее время турбины большой мощности (200 МВт и выше) эксплуатируются в широком диапазоне режимов, а цилиндры низкого давления с рабочими лопатками lрл ≈ 940–1200 мм попадают в условия работы, при которых последние и предпоследние ступени не вырабатывают механическую энергию, а поглощают вырабатываемую ступенями цилиндров высокого и среднего давлений. Для таких режимов эксплуатации необходимо провести оценку уровня потерь энергии в ступенях большой веерности, особенно для ступеней цилиндра низкого давления теплофикационных турбин ТЭЦ, которые часто эксплуатируются при полностью закрытых регулирующих поворотных диафрагмах, т. е. при расходах пара не превышающих 1,5–2,5 % расхода, поступающего в турбину. Оценку потерь энергии в соответствии со структурой потока при малорасходных режимах и принятой модели движения потока через ступень при наличии сформировавшихся структур, а именно основного потока (поступающего в направляющий аппарат); вихря, вращающегося в межвенцовомзазоре; привтулочного отрыва, состоящего из серии последовательно расположенных вращающихся вихрей, целесообразно выполнить на первом этапе для основного потока, включая струйки, соответствующие областям концевых потерь или областям, сопряженным с привтулочным отрывом потока и вращающегося в межвенцовом зазоре вихря. Отмечено, что потери энергии в основном потоке, проходящие через ступень, линейно увеличиваются при снижении относительного объемного расхода рабочей среды. Максимальный уровень интегральных потерь энергии в основном потоке достигается при «чисто» вентиляционном режиме, при котором расход рабочей среды через ступень нулевой или близкий к нему и может составлять примерно 30 % теплоперепада на ступень при номинальном режиме ее работы, соответствующий максимальному КПД на венце ступени.
  • Документ
    Аналіз перспектив розвитку цифрової енергетики в Україні
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Гриб, Олег Герасимович; Сендерович, Геннадій Аркадійович; Дяченко, Олександр Васильович; Карпалюк, Ігор Тимофійович; Швець, Сергій Вікторович
    Основні проблеми традиційної енергетики, зумовлені ростом цін на енергоносії, які в свою чергу пов’язані з вичерпністю легкодоступних родовищ органічного і ядерного палива, а також частими аваріями на атомних станціях, які в свою чергу, викликали необхідність аналізу стану споживання енергії на сучасному етапі розвитку суспільства та визначення шляхів енергозабезпечення людства у майбутньому. На фоні проблем з викопними джерелами енергії одними з ключових глобальних трендів розвитку енергетичної галузі стають розвиток альтернативних джерел енергії і цифрова енергетика. Дані процеси уже в значній мірі вплинули на економіку паливно-енергетичного комплексу в деяких країнах світу і продовжують розвиватися. Розповсюдження відновлювальних джерел енергії вже починає глобально впливати на виробництво, споживання енергії та на функціонування електромереж, особливо в країнах, де частка відновлювальних джерел енергії в традиційній енергетиці перевищує 10 % до таких країн за прогнозами найближчим часом ввійде і Україна. Перехід від нинішніх моделей прогнозованої генерації із здебільшого постійною потужністю до мереж, до яких під’єднані змінювані відновлювальні джерела енергії, вочевидь потребуватиме великих змін. Виконання заходів щодо впровадження змінюваної та розподіленої відновлювальних джерел енергії потребуватиме більших зусиль щодо керування потоками енергії у мережі, її перерозподілу та накопиченню. Цифровізація може вирішити виклики, що лише посилюватимуться у майбутньому, в три етапи: розумне створення енергії, розумне оперування нею та взаєморозрахунками з клієнтами і розумне її споживання. Головною проблемою тут є потреба в величезній кількості даних, які потребуватимуть обробки, аби розуміти, як працює мережа в будь-який момент часу, аби за умов постійної зміни її параметрів можна було керувати змінними чинниками, прогнозувати їх, оцінювати поточні потреби клієнтів та спроможності постачальників енергетичних послуг. Авторами статті був проведений аналіз цифровізації енергетики та виділено декілька основних напрямів її розвитку. Проаналізовано динаміку росту кількості власників сонячних електростанцій що встановлені в приватних домогосподарствах України, тому що вони можуть стати одними із перших учасників цифровізації в країні.
  • Документ
    Численный анализ влияния режима эксплуатации вентилятора на нестационарные нагрузки и режимы колебаний лопаток
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Донченко, Вячеслав Владимирович; Гнесин, Виталий Исаевич; Колодяжная, Любовь Владимировна; Кравченко, Игорь Федорович; Петров, Алексей Владимирович
    Стремление к повышению эффективности газотурбинных двигателей приводит к необходимости конструировать лопатки осевых турбомашин более тонкими, с большими углами атаки и предназначенными для работы при высоких скоростях вращения. Однако, эти качества увеличивают риск проявления аэроупругой неустойчивости, такой как флаттер или резонансные колебания. Флаттер представляет собой самовозбуждающуюся неустойчивость под действием аэродинамических сил, индуцированных вынужденными колебаниями лопаток, которые вызваны, в свою очередь, внешними возмущающими силами при вращении лопаток в неоднородном вверх по течению потоке. Для того, чтобы выполнить важнейшие требования надежности и безопасности эксплуатации газотурбинных двигателей, необходимо уметь прогнозировать аэроупругое поведение лопаточных аппаратов как можно раньше и точнее. В последнее время развиваются новые подходы, основанные на маршевой по времени схеме, включающей интегрирование уравнений аэродинамики и динамики упругих колебаний. Хотя эти методы требуют значительных вычислительных ресурсов, они привлекают корректностью постановки связанной задачи аэроупругости, учитывающей взаимное влияние колебаний лопаток и нестационарных аэродинамических нагрузок. На основании анализа современного состояния проблемы аэроупругости турбомашин и существующих методов прогнозирования флаттера можно заключить, что наиболее перспективным подходом в исследовании аэроупругого поведения лопаточного венца осевой турбомашины является подход, основанный на трехмерной модели нестационарной аэродинамики и модальном анализе движения лопатки. Предложенный численный метод решения связанной аэроупругой задачи в трехмерном транзвуковом потоке идеального газа позволяет прогнозировать аэроупругое поведение лопаток, включая вынужденные, самовозбуждающиеся колебания и автоколебания с целью повышения надежности лопаточных аппаратов турбомашин.
  • Документ
    Адаптація керування в електропневматичних системах з дискретним програмним керуванням
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Бєліков, Костянтин Олександрович; Губарев, Олександр Павлович
    В технологічних процесах з використанням дискретних систем пневмо- і гідроавтоматики одним із шляхів підвищення ефективності системи можна вважати скорочення часу на виконання операцій. В роботі розглядається сегмент системи, що складається з двох приводів з програмним керуванням. За рахунок наявності програмної складової в системі керування, при усталених умовах та стабільних динамічних характеристиках системи, є можливість скорочення часу між ефективними діями приводів. Цього можна досягнути за рахунок суміщення ділянок холостого ходу приводів, якщо це не суперечить конфігурації системи та технологічним вимогам до циклу. Розглядається спосіб скорочення часу виконання операцій передчасною подачею сигналу керування на другий привод та описується алгоритм вибору моменту часу подачі керуючого сигналу. Зазначено, що при керуванні системою приводів, може виникати необхідність регулювання періода роботи групи модулів за встановленим ззовні часом, що викликає необхідність затримки керуючого сигналу і також, може бути введено в програму, в якості моделі для прогнозування часу спрацювання та визначення часових міток. Наведено приклад типового сегменту системи, для якого може бути використано запропонований спосіб керування. Описано алгоритм розрахунку часових проміжків та міток для прогнозування тривалості операції і врахування, через них, корегуючих значень для забезпечення необхідної послідовності спрацювання приводів автоматичної системи, з мінімальною кількістю помилкових спрацювань. Запропоновано використання адаптивної моделі напрацювання умовного рефлексу, що забезпечить врахування змін динамічних характеристик в процесі роботи приводів механотронної системи. Приведено критерій для оцінки можливості застосування запропонованого алгоритму на ділянках автоматизованих ліній та приведено оцінку скорочення затрат часу в залежності від характеристик приводів. Зазначено, що є необхідність енергетичного аналізу для оцінки енергоефективності запропонованого рішеня.