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Abstract
Reported research on spinning shafts is mostly restricted to cases of constant rotational speed without 
examining the dynamics thatoccursduringtheir spin-up or spin-down operation. In suchcases, the motion is 
described by a nonlinear system of Partial Differential Equations (PDEs) coupled with an Integro-Differential 
Equation (IDE). The nonlinear system of PDEs with IDE, projected onto the infinite basis of the modes of the 
underlying linear system, results in a system of nonlinear Ordinary Differential Equations (ODEs). In this 
articleis appliedthe multiple scales perturbation method for dynamic analysis and the system in first order 
approximation takes the form of two coupled sets of pairedequations. The first pair describes torsional and 
rigid body rotation whilst the secondconsists of the equations describing the two lateral bending motions. 
Although in this system non-conservative forces are not considered in terms of damping or explicit externally 
applied load (torques/forces), the solution of the Is'order approximation of the first set of equations indicates 
that there are no periodic motions. The solution of the second set of equations of 1st order approximation 
coincides with the case of constant rotating speed. It isshown, that the Normal Modes in bending motions are 
the critical speeds of the shaft. It is shown that the frequencies in the Campbell diagram coincide with the 
frequencies associated with the 1st order solution of the nonlinear system. Moreover, the analytical solution of 
the first pair of equations is in good agreement with direct numerical simulations. This work paves the way for 
the development of the Nonlinear Campbell diagram that can be used to determine the dynamic behaviour of 
rotating structures during spin-up or spin-down operation.
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Introduction

Although much work has been reported about spinning shafts,only few articles are related in 
examining their dynamics during spin-up and spin-down operation. Suherman, and Plaut [1] 
developed a model and examined dynamics for a spinning shaft with non-constant rotating speed and 
flexible internal support, but torsional motion was neglected in their treatment. In [2], Kirk et al. 
developed a model for a spinning shaft with eccentric sleeves as dynamic boundary conditions 
considering also non-constant rotating speed, whilst Georgiades [3] projected the dynamics of the 
system of equations (PDEs) developed in [2] in the infinite linear modes of the underlying linear 
system to obtain the discrete system,and then,in case of constant rotating speed, the correlation of the 
eigenvalues of the discrete systemwith those obtained from Finite Element Analysis (FEA) was 
examined.

In this article,the method of multiple scales is used to solve the 1st order approximation of the 
discretized nonlinear system. The eigenvalues of the 1st order solution for bendingarethen compared 
witha Campbell diagram arising fromthe FEA solution in [3]. Finally,the analytical solution is 
compared with direct numerical simulations.

1. Equations of motion, multiple scales approach

In [2] the equations of motion (PDEs) of the spinning shaft with non-constant rotating speed 
considering Euler-Bernoulli beam including rotary inertia terms, made of isotropic material without
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including any explicit non-conservative terms such as viscous damping or externally applied load 
(torque or force), were derived, and they are given by,

(/5 + I6)Ld + 0 [ [l1w 2 + Il v 2 + (/5 + 4 ) # 2] d x  — [ [(/5 + Ie)$\dx +
Jo Jo

+ 20 J0I [(/S + Ie )$ $  + Ii_vi> + I1wvv\dx — JqU^w v  — i-ivw] d x  = 0, (1a)
I1£)2v  — I^dw — 2Il Gvv — Il v + (I5v ')' — (k5v '')'' = 0, (1b)
Il ()2w  + I-l'Ov  + 2 I-lOv  — I-lW + (/6w ')' — (k6w '') ' ' = 0, (1c)
(4  + 16)0 2 + (is + i6)8 — (is + 16)$  + [ ( ^ )  0  ' ] '  = 0. (1d)

The first equation describes the rigid body rotational motion (0(t)); the seconddescribes the 
bending motion in the y-direction (v(s, t)); the thirddescribes the bending motion in the z-direction 
(w(s, t)); and finally, the fourthdescribes the torsional motion (4>(s, t)). It should be noted that the 
equation describing the axial motion is fully decoupled. In the above, the nonlinearterms are indicated 
in bold type, and collectively form a nonlinear system of PDEs coupled through the non-constant 
rotating speed with one integro-differential equationthat describes the rigid body motion of the shaft. 
It is readilyverified that in case of constant rotating speed this system takes the form of one decoupled 
torsional equation and the lateral bending equations coupled with the rotating speed as a parameter. 
The Boundary Conditions (B.C.s)are,

v(0, t) = v(L, t) = 0, v ’'(0, t) = v ’' (L, t) = 0, w(0, t) = w(L, t) = 0, (2a-f)
w' '(0, t) = w' ' (L, t) = 0, 0(0, t) = 0,& (L, t) = 0, (2h-j)

whereas, eq. (2a-b,2e-f,2j) are the strong B.C.s arising from the geometry of the problem (simply 
supported shaft in bending and fixed-free torsional motion) and eq. (2c-d,2h-j) are the weak B.C.s 
arising from the equilibriums in free motions through the Extended Hamilton’s Principle formulation. 
The coefficients are given by,

h  = nPo(r02 — n 2), IS = I6 = Pol = ™Po ), k5 = k6 = EI,k7 = k8 = 2GI, (3a-d)

with r0,ri, external and internal radius of shaft respectively, L is the length of the shaft, p0,E,G  are the 
density Young’s and shear modulus, respectively.
To project the system of equations (1) in the infinite base of the linear modes of the associated linear 
system, in [3] it was considered that for equations (1b-c) the associated linear problem is the simply 
supported Euler-Bernoulli beam in bending, and for the homogeneous case for the equivalent 
torsional equation(1d), it is the rod in axial vibration. In [3],the displacements were expressed by 
truncating the series into the first linear mode, then, with multiplication of each equation with each 
associated mode shape and then integration in longitudinal x-direction, lead to the following system of 
equations,

1 + qj + iw + ^0 
(2/5i) (2/5L) (2/5L)

QvQw + QvQw B q v qv B q „ q „

(2/5D (2/5L) ' (2/5L) (I5L) (i5l)
Sqw + (1 — M)qv = [62 — w^(1 — M)]qv — 2 0qw, 
—Sqv + (1 — M) qw = [62 —w l(1 — M)]qw + 2 0qv

,—FB + q$ = Fd2 

with the following constants, mode shapes, and frequencies [3]

F = (2 /5) J 0i y1(s)ds = ^V7^I; '

(hD

M = Is Jo y i" (s )y i(s )d s  = — j-i2’

(4a)

(4b)
(4c)
(4d)

(5a,b)
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yi0?) = Jlrsin (H  Mb = JlJz?+W Yl(s) = M sin (5c-f)

Here, the solutions of this system ofequations (4) are considered in the following form,

0 = £O0O + £101 + £202 + H. 0. T , qv = £1qv l + £2qv,2 + H. 0. T., (6a-b) 
Rw = £1Rw,i + £2Rw,2 + H.O.T., q^ = £1q ^ 1 + £2q^,2 + H.O.T. (6c-d)

Also, following the multiple scales approach, the system of equations (4) takes the form of the various 
£-scale orders:

Fotios Georgiades

Dq 0q = 0  ^  Do00 = D ^  0O = DT0 + ct, (7)
g1,

— ^^id90,i = —4I5LDOD10O, (8a)
Do0o<lw,i + (1 -  M)D%qv l -  (Do0o)2qv l + u,2b(1 -  M)qv l + 2Do0oDoqw l = 0, (8b) 
-D%0oqv l  + (1 -  M)Dlqw l -  (Do0o)2qw l + w%(1 -  M)qw l -  2Do0oDoqv l = 0, (8c) 

- FDq0 1 + Doq^,! -  2FDo0oDo01 + = 2FDoD10o + 2FDo0oD10o., (8d)
£2,

2I5LDq02 -  FD'^q^2 = F-l =
= - 2 l5L(2DoD101 + 2DoD20o + Dl0o) -  DgOoq2,! -  £>o0o9w,i -  ^o®o?0,i + 2FD0D1q^,1 + 

+9f,iA)9w,i -  Rw,i^oRv,i -  2^ ô ô oQv,i Qv,i -  2A)®oA)9w,i9w,i -  2^o®oA)90,i90,i,(9a) 
A )M w ,2 + (1 -  M )DlqVi2 -  (Do0o)2qv2 + o ^ (1 -  M)qv 2 + 2Do0oDoqw2 = F2 =

= ^o®i9w,i -  2^o^i®o9w,i -  2(1 -  ^ ')^oD1qv l + 2Do0oDo01qv l  +
+2Do0oD10oqv l -  2Do0oD1qw l -  2Do01Doqw l -  2D10oDoqw,1, (9b)

- Dg0oqv2 + (1 -  M)Dgqw2  -  (A)®o)29w,2 + Mb(1 -  M)qw,2 -  2A)®oA)9r,2 = ^3 =
= D'^01qv l + 2DoD10oqv l -  2(1 -  M)D0D1qw l + 2Do0oDo01qw l +

+2 Do0oD10oqw l + 2Do0oD1qv l + 2 Do01Doqv l + 2 D10oDoqv l , (9c)
- FD202 + ^ 0^0,2 -  2FDo0oDo02 + uij-q^,2 = F4 =
= F(2DoD101 + 2DoD20o + Dl0o) -  2D0D1q^,1 +

+F[(Do01)2 + (D10O)2 + 2Do0iD10o + 2Do0o^i®i + 2DO0OD20O]. (9d)

It is notable that the left sides of equations for 1stand 2ndorder equations are not fully coupled, 
but are coupled in pairs. The first pair consists of theequation for the rigid body rotation with the 
torsional motion and the other with the two equations for the lateral bending motions.

2. Analytical solutions

2.1 Analytical solution of 1st order approximation, for torsional-rigid body rotation, motions

Here, the solution of the 1 storder approximation for the rigid body motion coupled with torsion, 
is considered.Elimination of the secular terms in equation (8a) and taking into consideration equation
(7) leads to,

DqD-lOq = 0 ^  DtD = 0 ^  D-lDTq = D-lOq = 0 . (10)
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Considering (10), all secular terms in the right-hand side of equation (8d) are seen to be 
eliminated.To simplify the equations for the rest of the article over-dot notation will be used instead of 
D0, and dash notation will be used instead of Dx.

The 1storder approximation for rigid body rotation (eq. 8a) with torsion (eq. 8d) considering 
equations(7,10) and the new notation, can be written in the following form,

2I5L91 — F q ^ i — °
-F01 + — 2 FD01 + — 0.

(11a)
(11b)

In the above system (11) the angular rigid body position is involved only with its 
derivative,thereforethis system can be solved with respect to 91. Then, the angular position can be 
trivially obtained by integration in time of the angular velocity. The system of equations (11) can be 
solved by writing asa first order system of 3 differential equations with respect to ^ ,  q^^, q0 ,i. The 
eigenvalues of this system, in case of,

2I5L(2I5L — F2) o j  > F4D2. (relative small rotating speed) (12)

They,are given by,

(13a-c)

with,

Co —
Fln

2ISL - F 2 Mo —
Û 215L(215L-F2)-Fin2

(2 /5i - F 2)2
(14a,b)

The real part of eigenvalues can be zero(£0 — 0) only in the case of non-rotation withfi — 0. 
Therefore, although a non-conservative load in explicit form is not included,the spinning shaft with 
non-constant rotating speed has no periodic motions since the real part of the eigenvalues is never 
zero. It should be also highlighted, that the imaginary part of the eigenvalues (u0) which define the 
frequencies of the motions are very different from the natural frequencies in torsion (« r ).
The solution of the corresponding 1storderapproximation system (eq. 11) is given by,

r t e n  r  6i(0) 1
! 90,i(7o) [ — [Pi][diag(exp(Al j T0))][P^;1] j q^,i(0) ,
W0,i(To)J U «,i(0)J

j  — 1,2,3 (15)

whereas,P1 is the matrix with the associated eigenvectors. To simplify the expressions,the following 
constants are defined,

2 FB , 2 IrL 2 IrLZr,a, ——z-, b1 — —̂ ,  c-i — — j  — -2/5L̂ q ^ — a1 — F2n(Zp+Mo) ( i 6o e)
F(fo+M;̂ ), 1 f ( Co +m^ 1 2di 2/5lmo"t ,( )

n 1 -f(Co+Mo) h — _L — ai ~c! /5̂ CqP-P̂ (Co+Mo) (16fh)
2dt 4/5LM0 , 1 2b! 1 2b1d1 4(/5L)2Mo . ( - )

Then the matrix of eigenvectors(/\)and its inverse (P-L x)are given by,

1 1 1 1 0 —1/61 ■
Pi — a1 c1 + id.  ̂ c1 — id1 , V  — igi —i/i h1 — ik1

0 h  b1 . —igi i/i h1 + ik1
,(17a,b)

Now, from equation(15), and taking into consideration equations (13-14,16-17) the explicit 
form solution of the 1 storder approximation of the system of equations (11)is given by,

(T0) — A n  + e^°T° ( 2Agilcos(p0T0) + 2Ag 2sin (^ 0T0))  — An  + A12e(^0+l̂ 0)T° + cc,(18a)
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?0 ,i(To) = ^21 + e f°r° ( 2^ 0 ,1cos(^o7’o) + 2 A ^2sin (^oTo))  = ^21 + ^ 22e (fo+1Mo)7’° + cc,(18b) 
?0 ,i(T’o) = 2 e f°7° [(Co^0 ,i +Mo^0 ,2)cos(^oT’o) + ( ^ 0,2 _  Mo^0 ,i)s in (^o7’o)], (18c)

with,

A n  = 0 i (0 ) _  ^ ^ ,  ^ e,i = M * , i ( 0), ^ e,2 = _ 3 i 0 i(O) + / 1q0 ,1(O) + M 0,i(0),(19a-c)

A21 = a A ( 0 )  _ ^ q 0 1 (0), = _ d 1g101(0) + d1/ 1q0 1 (0) + ( c ^  + d1fc1)q0 1 (0), (19d-e)

^ 0,2 = _ ci5 i^ i(0 )  + c1/ 1q0 ,1(O) _  ( M i  _  ci fci)q0 ,i(O), (19f)
A12 = ^e,i _  iA0,2, A22 = ^ 0,1 _  iA$ 2. (19f-h)

2.2 Analytical solution of 1st order approximation for lateral bending motions

In this section, the second pair of differential equations (8b-c) of 1 storder approximation, are 
solved. Usingthe new notation, and considering (7,10),the 1storder approximation of equations of 
motion for lateral bending (eq. 8b-c) take the form,

(1 _  M)qv l  _  n 2qv l + w l(1 _  M)qv l + 2 ^^w l = 0, (20a)
( 1 _  M)qw l _  n 2qw l + w£( 1 _  M)qw l _  2Dqv l = 0. (20b)

Fotios Georgiades

The system of equations (20) is the same as one describing the motion of a spinning shaft in case of 
constant rotating speed [3], and the solution can be obtained by writing the system as first order 
differential equations.Consider now relative small rotating speeds which obey the following two 
conditions,

n 2  < _ ( l - M ) 2^ , j2 _ i £ ± i l ^ 2 + ^  < 0 . (21a,b)
b ( l - M ) 2 ( l - M )  ^  ( l - M ) 2 b V W

Then, the eigenvalues of this system (eq. 20) are,

•̂2,1 = _iw  A2,2 = _t&) 2, ^2,3 = ^2,4 = t&) 2, (22a-d)

withthe explicit form of the natural frequencies with respect to rotating speed given by,

wl+2 =
(M + l)

( l - M ) 2
+ 2^

(1 - M W  ( l - M ) 2 (23)

A plot of these frequencies, from (23),with respect to the rotating speed is used to form the Campbell 
diagram for a shaft with a constant rotating speed. It should be noted that in case of neglecting the 
rotary inertia terms in bending, withM = 0, and (23) can then be simplified to the form,

« 1+2 = lwb +^1. (24)

It should be noted, that based on previously reported research on nonlinear dynamics (also herein for 
the other set of equations), in the case that secular terms in s2 are eliminated,then the frequencies 
defined by equations (23,24) are expected to have detuning frequencies in T1 scale, and therefore 
these frequencies (« i,2) will no longer be the actual ‘resonant’ frequencies in bending during spin-up 
or spin-down.

In case of constant rotating speed, it is notable that based on the latest definition of the 
Normal Modes which are theperiodic motions, not all frequencies are associated with the Normal 
Modes since the periodicity condition for the angular position must satisfy,
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9o( t0iT) — Qo.o — mod [QT0T,2n] = mod -,2n — 0 , (25)

andthis is true only when o)j — n.fi(with j=1,2 and n any integer). For n=1 then it is the 1-1 resonance 
which is the case o f Critical Speeds o f the shaft and these are the frequencies o f the associated 
Normal Modes o f the shaft, which justifies the resonances in FRFs of imbalanced shaftswhen the 
rotating speeds are near (due to damping) to the critical speeds.
The solution of the system of equations (20) is given by,

I Rw:i(To) 
9r1i(T’o) 

^9w1i(7’o)>

= [P2][diag(exp(2.2jT0))][P2 1]

r9 ia(0)
I V i W  

^ i ( 0 ) 
Vqw,i(0)J

j  — 1,2,3,4 (26)

The matrix of the associated eigenvectors (P2), and its inverse (P2 x)are given by,

P, —

—i(^2, ^ 1, iw2 —dn2, —d2dn2, ia 1a ^d nl '
— ̂ 2, ^ 2' b2 —d2 n — 1 iw2b2dnl, dn2, b2dn2, —iw2w fd nl
1,
■ b2

1,
. d2

1, 
■ b2

1

i dl
, ^2 1 — i^\d2d-fl'\, — dn2, —d2dn2, —ia l ui^dnl

— I —  L Wl — I —̂2 I —“ i ^2 - — ̂ W2^2^nl, d ^ 0 b2dn2, ia 2a fd nl .

with,

b2 = 

dn\ =

d-y ——0? + (l—M~) —̂2 )

dn?. — '[ - ^ 2+ ( l - M ) ( w ^ - w |) ] w 2 - [ - ^ 2 + ( l-M )(w ^ -W 2 )]w |, n  ( l - M ) ( w |- w 2)'

Therefore, considering equations (22-23,26-28) the solutions of equations (20) are given by,

Rv, i(T0) — Cv le iaiT° + Dvle l^ T° + cc, 
^w,i(ro) = cwiei" l7b + Dwlela?T° + cc,

,(27a,b)

(28a,b)

(28c,d)

(29a)
(29b)

with,

cvl ^vl,l + ^ v l ,2 + ^^v2,2,^wl 5,1,1 + ^^w2ll, ^w l ^w l,2 + ^ w 2l2, (30a-d)
Bv i,i — — d„2qw,i(0) — dn2d2qv l ( 0), Bvl2 — dn2qw l( 0) + dn2b2qv l ( 0), (30e-f)

Bv2,i — dn lw1d2qv l (0) — dn lw1w^qw l (0), Bv2 2 — —dnlb2w2qv l (0) + dn l« f « 2qw 1(0),(30g-h) 
Bw 1,1 — —dnlb2d2qv l (0) + dn lb2u ’̂ qw,1(0), Bw1i2 — dn lb2d2qv l (0) — dn lw ld 2qw l (0), (30i-j) 

Bw2,i — — dn2 qw,i(0) — dn2(b2d2/ a 1)qv l (0), (30k)

Bw2,2 — dn2 9w,i(0) + dn2(b2d2/ w2)qv l (° ) . (30l)

2.3 Solution of amplitude modulation equations for rigid body and torsional motions

In, order to finalise the 1 storder approximation solution for rigid body and torsional motions, on this 
section the amplitude constants in the equations (19) with respect to time scale7\, we will be 
determined by eliminating the secular terms of s2 in equations(9a,9d) and solving the amplitude 
modulation equations. Considering equations (7,10)and elimination of T2 secular terms, then the right- 
hand side of equations (9a,9d)lead to,

D2n  — 0 ^  d2d t0 — 0 ^  d20o — 0, (31)
F\ — —4^5^^i®i + 2^^ i?0 ,i — 2^90,i90,i + 9tf,i9w,i — Qw,iQv,i — 2^9r,i9r,i — 2^R w,i Rw,i ,

(32a)
(32b)F4 — 2FD1Q1 — 2D1q0,1 + F (0 i) + 2FQD1Q1.
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Considering the solutions of first order approximation (18) after some manipulations and using the 
new notation, thenthe equations (32) are taking the form,

F± — - 4 15L \a '11 + e^°T° ^2A'e i cos( .̂0T0) + 2A’e,2sin (y.0T0) ] + 
+4FeS°T°[(S0A'<i>il + ^ 0A'4>,2) cos(̂ 0T0) + ((0A’̂ 2 -  ^ 0A’̂ 1)s in (^ 0T0)] -  

- 4 n{A 21e ^ T°[((0A'^1 + ^ 0A'^2) cos(^ 0T0) + ( (0A' ,̂ 2 - ^ 0A'^1)s in (^ 0T0)\ + 
+e2 ôTo(o(A^ilA '^1 + A ^ 2A'^i2) +

+2e2^oTo{[(o{A^1A'^1 -  A^, 2^ 0 2) +Mo(A0 ,2A0 ,i + A ^ i1A'^2) \cos(2 .̂0T0) +

+ [Co(^ 0 ,2^ 0,1 + A0 ,1A0 ,2) -  Mo(^0 ,1^ 0 ,l -  ^ 0 , 2^ 0 , 2)]sin (2M070)} | +
+Rv,iRw,i — Rw,iRv,i — 2^R v,i Rv,i — 2^R w,i Rw,i > (33a)

F4 — 2F \a ’11 + e ^ r° {2A'g i cos(^ 0T0) + 2A'g2sin (^ 0T0)J\ -  
-2e^°T°[2((0A'^1 + ^ 0A'^2)cos(^ 0T0) +

+ 2(<o^0,2 -  V-oA'(t>1)s in (y.0T0)] + FA2ll  + 2Fe2^°T°(A’̂ 1 + A2g 2) +
+2Fe2^°T°[(A2g i - A 2g2)cos(2ii0T0) +2Ae i Aei2sin (2^0T0)] +

+4Fe^°T° (a 11Aq,1cos(jj.0T0) + A11Ae2sin (^ 0T0) '̂  +

+ 2 n \A ’11T0 + 2et°T° [(^,ei^g~ ĵj'2M°)co^(mo^o) + (^ 1 ^ ° ) s m ^ o )]} .(3 3 b )

Averaging in cosine and sine terms with frequencies ^0and elimination of the corresponding secular 
terms in equations (33) lead to the following amplitude modulation equations:

Fotios Georgiades

= 0 ,
—2I5LA'g i + (F — ^ ^ 2i )Co^0 ,i + (F — n A 21)^ 0A'4>2 = °

= -F A ,, A11^ 0,1=( F + ffti) - ^  -  a  (tfeiH*-  -  ^
—2I5LA'g2 — (F — n A 21) .̂0A'lp,1 + (F — ^ A 21)(0A'lp,2 = 0, 

( | g g )  4 u  + ( 7 + ^ )  A’g,2 + MoA ^  -  ^ 0,2 = -F A llA e,

(34)
(35a)

(35b)

(35c)

(35d)

Eliminating the coupling terms with derivativesin equations (35)by inversion of the matrix that 
multiplies theseterms and therefore pre-multiplication of the system with this inverse matrix, leads to 
the following system,

(36)

(A’e . i V ^
au . al2, 0, 0 rAeA(Tl )'

A’e,2(Ti) - a12, an , 0, 0 AB.2(Ti )
a0,i (7’i ) a31> a32> 0, 0

'
A ^!(T i )

A * ( ti )'
.- a 32’ a3h 0, 0 A ^ )

with,

-b3e3(a3-b3c3)

a32 =

_  b3d3e3£•£19 — ,dn3
a-3S3{a3̂ g-b3c3̂ 0+b3d3̂ 0) 

(Co+Mo)̂ «3
a3 = 2ISL, b3 — (F -  HA21) , c3 = F +

„ ^3e3(~a3̂ 0 + b3c3̂ 0 + b3d’3̂ 0)
a31 = W ^ 3 ,(37a-c)

dn3 — a l -  2a3b3c3 + b%c3 + b%dl, (37d-e)

d3 — e3 — -F A ,

In (36) the first two equations are fully decoupled from the rest,and their eigenvalues are given by.

(37f-j)

A, = Ci ± i^i =
(b3c3-a3)e3b3

± i~ b3e3d3 (38)

The solution of the first two equations of this system (eq. 36)are given by,
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k -  1,2 , (39)

with the eigenvectors matrix (P3) and its inverse(P3 x)given by,

11 11
rM i+ c c i- a n ) ; %2 ■' 

2Mi 
Oi2 . 
2mi .

p 3] = Ci-an+i^i 
■ “l2 “ 12 -

, t o - 1] -
2Ml 

M i-C C i-a n ) ;  
- 2̂ 1

(40a,b)

Finally, considering the equations (36-40) the amplitudes for rigid-body rotation and torsional 
motions in the time scale T 1, are given by,

Ae,1(T1) = e^iri (NR1 + iN/ 1) e iMl7’1 + cc = e ^ ri[2NR1cos(p1T1) -  2NI1sin(n1T1)], (41a) 
A8,2(Ti) = e Ciri(wR2 + + cc = e^^T̂ [2NRi2cos(p1T1) -  2NIi2sin(p1T1)], (41b)

^ 0 ,i(T’i ) = J [ a3i^ e ,i(7i) + a32ABi2(T1)] dTr + c1 = e^lTl(MR1 + iM i^)el^lTl + cc + c1, (41c) 
^ 0 ,2(T’i ) = J [ —a 32^e ,i(T’i ) + a 3i^e,2(7i)] dT-i + c2 = e^lTl(MR2 + iMI2)e lMlTl + cc + C2, (41d)

with,
Nr, i = ^8 ,l(0 ) Ar (Cl- a l l ) ^ 0 , l ( ° ) - a 12^0,2(°) u  ^0,2(O) yNi,i = ------------— --------- !----, Nr,2 = , (42a-c)

N] 7 —(Mj + (C l~a l l ) 2) ^ ^ l ( 0 ) ~ a 12(Cl~a ll)^9 ,2 (0 )
2 a 12Ml

2Ml
Cl = i(0) -  2Mr x ,c2 = Afr2(0) -  2MR2,(42d-f)

„„ “ 3i(CiW R,i+M iW /,i)+a32(fiW R,2+MiW/,2) „„ a 31( ( 1Ni,1- ^ 1N R,1) + a 32( ( i N i , 2 - ^ i N R,2)
™R,1 -  z2,„2 , M/,l = z2,„2 , (42g-h)

- a 3 2 ( ( l N R,l+M lN i,1) + a 31( ( 1N R,2+M1N I,2) ^  - a 3 2( ( i N I,1- M 1NR,1) + a 31( ( 1N I,2 -M 1NR,2) .s
MR,2 = 72 ,,,2 , ™/,2 = r2 ,,,2 (42i-j)Sl+Ml Sl+Ml

3. Numerical results

A stainless steel shaft with external and internal radius ro=0.031 m,andri=0.028 m, 
respectively, and oflength L=1.188 m,density isp0=7850 Kg/m3, and the Young’s and the shear 
modulus are E=200 GPa, G=79.3 GPa, respectively, is considered. It should be noted that the 
particular shaft is thin-walled since the ratio of length with thickness is 396 (>> 10) therefore for the 
examination of the lower modes of vibration it can be modelled as Euler-Bernoulli beam by 
neglecting the shear effects [4].

3.1 Campbell diagram

In [3] the Campbell diagram of the spinning shaft with a constant rotating speed was 
determined through FEA. In Figure 1, the Campbell diagram obtained using equations (23) and also 
the data from the solution in [3] using FEA, is given, where the analytical solution is in full agreement 
with the results obtained from FEA.

3.2 Transient responses of 1storder approximation for rigid body rotation and torsion

In this section, the results obtained from the analytical solution of the 1storder approximation 
for rigid body with torsional motion, including both time scales are compared with the direct 
numerical integration of the original system (4).A relatively high rotating speed of 1000 rad/sec 
(approx. 9550 RPM) is considered, where the condition defined by (12) is still valid and this is the 
only nonzero initial condition.Figure 2a shows the responses for the rigid body angular velocity
(0)and shows the same trend (increasing amplitude), and for small energies the theoretical with 
numerical responses are in relatively good agreement, especially considering that the analytical 
solution is restricted to only the 1st order approximation.Figure 2b shows the responses for torsional 
modal angle (q^ ), where for small energies the numerical solutionis in relatively good agreement with
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the analytical solution.Finally, it is notable that for these initial conditions the numerical responses of 
both lateral bending motions are equal to zero, whereas the decoupling, of equations in two pairs of 
systems in the analytical approach, is justified.

Campbell Diagram

Rotating speed, R.P.M.

Figure 1. Campbell diagram

x  10 Angular Velocity Torsional Modal Angle

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time sec x 1 0 Time sec x10"

Figure 2.(a)Transient response of the angular velocity (0 ).(b)Transient response of the 
torsional modal angle (q^).

Conclusions

In this article, the method of multiple scales is used to solve the nonlinear system which describes the 
motion of a spinning shaft with non-constant rotating speed. The system’s equations were written up 
to 2nd order time scale and their left side showed that the four originally coupled equations were 
coupled in pairs. The first pair consists of the equations describing rigid body motion coupled with 
torsion and the 1storder approximation solution showed that although, there are not included in 
explicit form any non-conservative forces, there are no periodic motions on this system. The 
comparison of this solution with numerical simulations showed relatively good agreement. The 
second pair of equations describing the two lateral bending motions in the 1storder is coinciding with 
the case of constant rotating speed and it was derived the explicit form of the natural frequencies, 
which are in very good agreement with the Campbell diagram but these frequencies are expected to be 
detuned in case of considering T 1 —scale amplitude modulation equations. Considering the fact that 
there are no periodic motions on the spinning shaft, the next step is the development of a systematic
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approach for the examination of the dynamics of the spinning shaft during spin-up/down 
operationincluding; explicit non-conservative forces, torques and imbalances of the shaft.
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