Расчеты последующих коэффициентов разложения могут быть выполнены аналогично. Заметим, что для практических целей это разложение проще и удобнее реализовать численно.

Выводы. В работе предложена методика оценки эффективности компьютерной сети, на вход которой поступает суперпозиция потоков групповых заявок. С использованием марковской модели функционирования системы получены аналитические соотношения для расчета распределения вероятностей состояний системы. Рассмотрен пример применения метода.

Список литературы: 1. Гермейер Ю.Б. Введение в теорию исследования операций. –М: Наука, 1971. -383с. 2. Казаков В.А. Введение в теорию марковских процессов. –М.: «Сов. Радио», 1973. -231с. 3. Пугачев В.С. Теория вероятностей и математическая статистика. –М.: ФИЗМАТЛИТ, 2002. -496с. 4. Ильин В.А., Позняк Э.Г. Основы математического анализа. –М.: Наука, 1971. -509с.

Поступила в редколлегию 01.12.05

УДК 519.152

Л.Г. РАСКИН, д-р. техн. наук, *О.В. СЕРАЯ*, канд. техн. наук

МАРКОВСКИЕ МОДЕЛИ СМО С НЕМАРКОВСКИМ ВХОДЯЩИМ ПОТОКОМ

Розглянуто методику марковського опису функціонування системи обслуговування з немарковським вхідним потіком, для апроксимації якого використовується потік Ерланга.

1. Введение. Анализ литературы. Эффективность аналитического исследования систем массового обслуживания в значительной мере определяется качеством моделей распределений случайных величин, определяющих параметр функционирования системы. При выборе моделей этих распределений руководствуются, в основном, двумя следующими соображениями. Во-первых, модель должна адекватно отображать реальные процессы, протекающие в системе. Во-вторых, эта модель должна быть простой в той мере, чтобы используемые ею соотношения обеспечивали возможность проведения исследования и получения результатов в замкнутой форме. Для многих реальных систем идеальной моделью распределения случайных величин, удовлетворяющей обоим требованиям, является экспоненциальное распределение, приводящее к хорошо и всесторонне изученным марковским моделям. К сожалению, для других реальных систем эта модель не является адекватной. Так, например, многочисленные

исследования процессов передачи данных в компьютерных сетях, показывают [1,2], что плотности распределения интервалов между пакетами и продолжительности пакетов описываются специфическими медленно затухающими функциями, порождающими распределения с «тяжелыми хвостами». В частности этим свойством обладает трехпараметрическое распределение [3], имеющее вид

$$\varphi(\theta) = \begin{cases} \frac{1}{A} \cdot \frac{2 \exp\left\{-\frac{(\theta - \theta_1)^2}{2\theta_2^2} (1 + \theta_3 \operatorname{sign}(\theta - \theta_1))\right\}}{\theta_2 \sqrt{2\pi} (\sqrt{1 + \theta_3} + \sqrt{1 - \theta_3})}, & \theta \ge 0 \\ 0, & \theta < 0 \end{cases}$$
(1)

где

$$A = \int_{0}^{\infty} \frac{2}{\theta_{2}\sqrt{2\pi}(\sqrt{I+\theta_{3}}+\sqrt{I-\theta_{3}})} exp\left\{-\frac{(\theta-\theta_{1})^{2}}{2\theta_{2}^{2}}(I+\theta_{3}sign(\theta-\theta_{1}))\right\} d\theta,$$

 θ - случайная продолжительность интервала между заявками,

 θ_{l} - параметр распределения, задающий математическое ожидание θ ,

 θ_2^2 - параметр, задающий дисперсию θ ,

 θ_3 - параметр, определяющий асимметрию распределения.

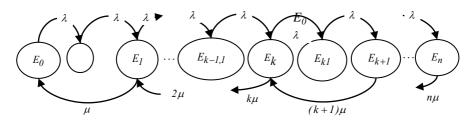
Возможности этого распределения изучены и рассмотрены в [3]. Там же (1) хорошо аппроксимирует показано, что распределение величин: распределения случайных классические экспоненциальное, релеевское, Вейбулла-Гнеденко, лог-нормальное (усеченное нормальное распределение является частным случаем (1) при $\theta_3 = 0$). В связи с этим понятно, что с использованием распределения (1) можно статистические описания входящих потоков в широком и разнообразном их спектре. С другой стороны, отрицательная асимметрия распределений реальных случайных интервалов между заявками входящего потока мотивирует исследование возможности приближения $\varphi(\theta)$ обобщенным распределением Эрланга, возникающего В результате пуассоновского потока и конструктивно обладающего этим же свойством. Функция распределения для потока Эрланга n - го порядка имеет вид

$$F(t) = 1 - e^{-\lambda t} \sum_{i=0}^{n-1} \frac{(\lambda t)^i}{i!},$$

а соответствующая плотность определяется выражением

$$f(t) = \lambda (\lambda t)^{n-1} e^{-\lambda t}$$
.

- **2. Цель статьи** исследовать эффективность приближения распределения (1) эрланговским распределением надлежащего порядка и, с учетом основного свойства этого распределения, разработать методику построения марковской модели функционирования системы с немарковским входящим потоком.
- 3. Основные результаты. Решение задачи построения марковской модели функционирования с немарковским входящим потоком естественно начать с отыскания параметра λ распределения Эрланга выбранного порядка путем аппроксимации гистограммы для случайных значений интервала между заявками в реальном потоке с этим распределением. Пусть, для простоты, эта аппроксимация получена с использованием распределения Эрланга второго порядка. Для описания функционирования системы с таким входящим потоком и экспоненциальным обслуживанием используем граф состояний и переходов, приведенный на рисунке.



Граф состояний и переходов системы с эрланговским входящим потоком и экспоненциальным обслуживанием

Здесь

 E_k - состояние, когда в системе занято ровно k каналов, k = 0, 1, 2, ..., n;

 $E_{k\,l}$ - буферное состояние, соответствующее ситуации, когда в системе занято ровно k каналов и поступила новая заявка, которая будет отсеяна и поэтому не влияет на изменение числа занятых каналов, k=0,1,2,...,n-1;

 λ - интенсивность входящего просеиваемого пуассоновского потока;

 μ - интенсивность обслуживания.

Для полученного графа состояний и переходов сформируем систему линейных алгебраических уравнений относительно неизвестных вероятностей состояний системы. Система уравнений имеет вид:

$$-\lambda P_{0} + \mu P_{I} = 0,
\lambda P_{0} - \lambda P_{0I} = 0,
\lambda P_{0I} + 2\mu P_{2} - (\lambda + \mu)P_{I} = 0,
\dots
\lambda P_{k-I} - \lambda P_{k-I,I} = 0,
\lambda P_{k-I,I} + (k+1)\mu P_{k+I} - (\lambda + k\mu)P_{k} = 0,
\dots
\lambda P_{n-I} - \lambda P_{n-I,I} = 0,
\lambda P_{n-I} + n\mu P_{n} = 0.$$
(2)

Полученная система уравнений решается традиционными методами и результат решения может быть представлен, например, формулами Крамера. Несмотря на очевидную простоту процедуры получения решения, такое представление неудобно, так как не обеспечивает аналитического описания искомых вероятностей состояний от параметров задачи (λ, μ, n) и поэтому не позволяет непосредственно оценить их влияние на эффективность системы обслуживания. Вместе с тем, система уравнений (2) допускает получение решения в явном виде с использованием следующего простого преобразования. Суммируя второе уравнение с третьим, четвертое с пятым и т.д., предпоследнее с последним, получим:

$$\lambda P_{0} - \mu P_{I} = 0,$$

$$\lambda P_{0} + 2\mu P_{2} - (\lambda + \mu)P_{I} = 0,$$
......
$$\lambda P_{k-1} + (k+1)\mu P_{k+1} - (\lambda + k\mu)P_{k} = 0,$$

$$\lambda P_{n-1} - n\mu P_{n} = 0.$$
(3)

Введем

$$z_k = \lambda P_{k-l} - k\mu P_k \tag{4}$$

С учетом (4) запишем систему (3) следующим образом:

$$z_1 = 0$$
, $z_1 - z_2 = 0$,..., $z_k - z_{k+1} = 0$, $z_k = 0$.

Отсюда $z_1=z_2=...=z_n=0$ или $\lambda P_{k-1}-k\mu P_k=0,\ k=1,\ 2,...,n$ Из этих соотношений следует рекуррентная формула

$$P_k = \frac{\lambda}{k\mu} P_{k-1},$$

из которой получим

Заметим теперь, что из второго, четвертого и т.д. уравнений системы (2) следует:

$$P_0 = P_{0,l}, P_l = P_{1,l}, \dots, P_{n-l} = P_{n-l,l}.$$
 (6)

Соотношения (5) и (6) с учетом условия нормировки позволяют рассчитать значение P_0 . При этом

$$\sum_{k=0}^{n} P_k + \sum_{k=0}^{n-1} P_{k,l} = 2 \sum_{k=0}^{n-1} P_k + P_n = P_0 \left[2 \sum_{k=0}^{n-1} \frac{\lambda^k}{k! \, \mu^k} + \frac{\lambda^n}{n! \, \mu^n} \right] = 1.$$

Отсюда

$$P_0 = \frac{1}{2\sum_{k=0}^{n-1} \frac{\lambda^k}{k! \, \mu^k} + \frac{\lambda^n}{n! \, \mu^n}}.$$
 (7)

Тогда, подставляя (7) в (5), получим

$$P_{k} = \frac{\frac{\lambda^{k}}{k! \, \mu^{k}}}{2 \sum_{k=0}^{n-l} \frac{\lambda^{k}}{k! \, \mu^{k}} + \frac{\lambda^{n}}{n! \, \mu^{n}}}, \ k = 0, 1, 2, ..., n$$

Понятно, что эти соотношения описывают вероятности состояний $E_k,\ k=0,\ 1,...,n$, в системе, соответствующей графу, приведенному на рис.1. Вместе с тем, истинная вероятность состояния E_k для системы, на вход которой поступает эрланговский поток второго порядка, равна

$$P_{k,j} = P_k + P_{k,l}, \ k = 0, 1, ..., n-1,$$

откуда, с учетом (6), имеем

$$P_{k,9} = 2P_k = \frac{2\frac{\lambda^k}{k!\,\mu^k}}{2\sum_{k=0}^{n-1} \frac{\lambda^k}{k!\,\mu^k} + \frac{\lambda^n}{n!\,\mu^n}}, \ k = 0, 1, 2, ..., n-1;$$
(8)

$$P_{n,\Im} = P_n = \frac{\frac{\lambda^n}{n! \, \mu^n}}{2\sum_{k=0}^{n-l} \frac{\lambda^k}{k! \, \mu^k} + \frac{\lambda^n}{n! \, \mu^n}}.$$
 (9)

Аналогично проводится анализ системы, на вход которой поступает поток Эрланга l-го порядка. В этом случае в графе состояний и переходов перед каждым истинным состоянием необходимо ввести (l-1) буферных состояний, описывающих переходы системы под воздействием отсеиваемых (l-1)-й заявок, не влияющих на число занятых каналов системы. Поскольку технология получения результирующих соотношений в этом случае аналогична описанной выше, приведем только окончательный результат.

$$P_{k,\Im} = lP_k = \frac{l\frac{\lambda^k}{k!\,\mu^k}}{l\sum_{k=0}^{n-l} \frac{\lambda^k}{k!\,\mu^k} + \frac{\lambda^n}{n!\,\mu^n}}, \quad k = 0, 1, 2, ..., n-1.$$
(10)

$$P_{n,\ni} = P_n = \frac{\frac{\lambda^n}{n! \,\mu^n}}{l \sum_{k=0}^{n-l} \frac{\lambda^k}{k! \,\mu^k} + \frac{\lambda^n}{n! \,\mu^n}}.$$
 (11)

4. Выводы. Получена методика расчета распределения вероятностей состояний системы обслуживания, на вход которой поступает немарковский поток, в качестве аппроксимации которого используется поток Эрланга надлежащего порядка. Расчет доведен до аналитических соотношений.

Список литературы: 1. Риордан Дж. Вероятностные системы обслуживания: Пер. с англ.-м.: Связь, 1966. – 184 с. 2. Кокс Д., Смит Ч. Теория очередей: Пер. с англ.-м.: Мир, 1966. – 218 с. 3. Серая О.В. Аппроксимация гистограмм трехпараметрическим распределением случайных величин // Інформаційно-керуючі системи на залізничному транспорті.-Харків: ІКСЗТ, 2001. – н3.-с.81-83.